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Abstract

amplitude is generally reduced in people with PTSD.

participants with PTSD.

Background: PTSD is associated with reduction in hippocampal volume and abnormalities in hippocampal
function. Hippocampal asymmetry has received less attention, but potentially could indicate lateralised differences
in vulnerability to trauma. The P300 event-related potential component reflects the immediate processing of
significant environmental stimuli and has generators in several brain regions including the hippocampus. P300

Methods: Our study examined hippocampal volume asymmetry and the relationship between hippocampal
asymmetry and P300 amplitude in male monozygotic twins discordant for Vietnam combat exposure. Lateralised
hippocampal volume and P300 data were obtained from 70 male participants, of whom 12 had PTSD. We were
able to compare (1) combat veterans with current PTSD; (2) their non-combat-exposed co-twins; (3) combat
veterans without current PTSD and (4) their non-combat-exposed co-twins.

Results: There were no significant differences between groups in hippocampal asymmetry. There were no group
differences in performance of an auditory oddball target detection task or in P300 amplitude. There was a
significant positive correlation between P300 amplitude and the magnitude of hippocampal asymmetry in

Conclusions: These findings suggest that greater hippocampal asymmetry in PTSD is associated with a need to
allocate more attentional resources when processing significant environmental stimuli.

Background

Post Traumatic Stress Disorder (PTSD) is characterised
by recurrent and intrusive memories, avoidance, and
hyperarousal. PTSD is also associated with impairment
in attention, and some studies have shown deficits in
learning and memory [1] It has been suggested that dis-
turbed processing of new environmental information in
PTSD is due to continuous background re-processing of
traumatic events, resulting in modifications of neural
circuits [2,3]. The resources required to maintain these
autonomous loops may therefore not be available for
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general attention and memory function. The capacity of
working memory has been shown to be directly related
to the severity of intrusive memories [4], providing em-
pirical support for this theory.

The hippocampus (HC), located within the ventral
medial temporal lobe, is central to the encoding and re-
construction of episodic memories [5]. The hippocam-
pus is part of a large extended network involving the
learning of material available within working memory.
Plasticity in the physical connections between the HC
and the neocortex is crucial for integrating multi-modal
sensory information and modifying memory dynamics
over time [6]. In addition the HC has a significant role
in executive processing systems [7,8]. The HC also con-
tributes to regulation of the hypothalamic-pituitary-
adrenocortical system, which is crucial in both acute and
chronic responses to stress [9].
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The hippocampus, located within the ventral medial
temporal lobe, has long been known to be central to ex-
plicit long-term recognition memory. Olsen et al. (2012)
[10], reviewed recent research showing that the hippo-
campus is also involved in short-delay recognition and
perception. Olsen et al. (2012) [10] concluded that the
hippocampus rapidly and continuously forms associa-
tions between disparate environmental inputs, including
comparing current perceptual input with internal repre-
sentations. The hippocampus is therefore part of a large
extended network involving the recognition and learning
of material available within working memory. This net-
work incorporates multiple brain regions, including the
prefrontal cortex. Failure in a significant part of this
extended network will compromise the functioning of
the network as a whole. The hippocampus also con-
tributes to regulation of the hypothalamic-pituitary-
adrenocortical system, which is crucial in both acute and
chronic responses to stress [9].

Psychological trauma has been found to have dam-
aging effects on the HC [11-14], and animal studies have
shown that stress induces changes in hippocampal
morphology and function [15,16]. In normal subjects the
volume of the right hippocampus is larger than the left
hippocampus [17,18]. Numerous studies have shown
that hippocampal volume (HCV) is smaller in people
with PTSD compared to controls [19-21]. A recent
meta-analysis of 39 studies reporting hippocampal vol-
ume in PTSD [22] found that people with PTSD and
trauma-exposed people without PTSD had smaller left,
right and total hippocampal volumes than people never
exposed to trauma. This suggests that trauma has an im-
pact on the hippocampus bilaterally. In addition, people
with PTSD had smaller volumes of the right, but not the
left, hippocampus compared to people who had been
exposed to trauma but did not have PTSD. The reduc-
tion in right hippocampal volume in PTSD reported by
Woon et al. [22] is consistent with an MRI study showing
reduced neuronal density in the right medial temporal
cortex in people with PTSD, compared to trauma-exposed
people without PTSD [23]. These findings suggest that the
right hippocampus is differentially reduced in volume in
people who develop PTSD.

Disruption of the normal pattern of hippocampal
asymmetry has been found in people with schizophrenia
[24,25] and in young people meeting criteria for an at-
risk mental state for psychosis [26]. Studies in mild cog-
nitive impairment and dementia suggest that there may
be changes in hippocampal asymmetry as memory dete-
riorates [27]. Taken together, these findings demonstrate
that abnormal hippocampal asymmetry is found in
people subject to pathological processes that affect brain
function and manifest as disorders affecting mental state
and cognitive function.
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Our participants consisted of male Vietnam combat
veterans with and without PTSD, and their non-combat
exposed monozygotic twins. The contributions of famil-
ial vulnerability and trauma exposure to biological
abnormalities in this study population have been investi-
gated by Pitman and colleagues [28]. Gilbertson et al.
[29] demonstrated that total hippocampal volumes were
about 10% smaller in men with severe PTSD, compared
to men who did not have PTSD. Consistent with this
finding, there was a significant correlation between total
hippocampal volume and PTSD symptom severity in the
PTSD group. However, these investigators also found
that there was no difference in hippocampal volume be-
tween participants with severe PTSD, and their combat-
unexposed identical twins, suggesting that smaller hip-
pocampal volume might be a biological risk factor, rather
than a consequence of trauma exposure and the patho-
physiological processes associated with PTSD.

In the present study, we investigated the relationship
between hippocampal asymmetry and the capacity to
process information about the immediate environment
in a sample of identical twins discordant for Vietnam
combat exposure. We utilised the amplitude of the event
related potential (ERP) P300 component as a measure of
the controlled allocation of attentional resources to an
anticipated stimulus. The P300 reflects processing of in-
formation about a significant stimulus, including context
updating, context disclosure, event-categorisation and
memory updating [30,31]. The P300 is most commonly
elicited by asking participants to identify target tones in
an auditory oddball task. The P300 has generators in a
number of brain regions, including the temporo-parietal
cortex, the cingulate cortex, the thalamus and the infe-
rior and middle frontal cortex [32]. There are two sepa-
rate generators in the hippocampus, located in the
anterior subiculum and the posterior hippocampal body
[33].

Numerous studies [34-39] including a meta-analysis by
Karl et al. [40] have indicated that the amplitude of the
P300 at midline electrodes in relation to trauma-neutral
target tones is generally reduced in patients with PTSD.
In a study involving the same monozygotic twin popula-
tion as the present study, Metzger et al. [41] found smal-
ler P300 amplitude in non-medicated, non-smoking
twins with PTSD, compared to their combat-unexposed
co-twins. In the full sample, there was no difference in
reaction time or P300 amplitude between any of the
groups (combat veterans with and without PTSD, and
their combat-unexposed co-twins respectively). A recent
study [42] found that P300 current source density was
significantly reduced in people with PTSD in the inferior
frontal gyrus, insula, and anterior cingulate.

The aim of the present study was to investigate the re-
lationship between P300 amplitude and hippocampal
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asymmetry in the twin sample described above. As noted
above, it has been established that hippocampal volume
has a role in predisposing to PTSD, and there may be
further changes related to both trauma exposure and to
the development of PTSD. The amplitude of the P300 to
trauma-neutral stimuli is generally reduced in PTSD, in-
dicating that the information processing abnormalities
characteristic of PTSD are reflected in changes in the
P300. In addition, hippocampal generators contribute to
P300 amplitude.

Given that both reduced P300 amplitude and greater
hippocampal asymmetry (with relatively great volume
reduction of the right hippocampus) are likely to reflect
pathological changes related to PTSD, we hypothesised
that there would be a negative correlation between P300
amplitude to trauma-neutral target tones and the magni-
tude of hippocampal asymmetry in people with combat-
related PTSD (such that smaller P300 amplitude would
be found in participants with greater hippocampal
asymmetry).

Methods
Participants
Participant recruitment, informed consent, and data col-
lection procedures have been described in previous pub-
lications [29,43]. Participants completed the 18-item
Combat Severity Scale [44], employed in Vietnam Era
Twin Registry research and previously validated against
combat related medals, which yielded a measure of the
severity of their combat exposure; and the Mississippi
Scale for Combat-Related PTSD [45], a 35-item instru-
ment for quantifying PTSD and related symptoms. The
presence of PTSD in participants was determined
by The Clinician-Administered PTSD Scale (CAPS):
Current and Lifetime Diagnosis Version [46,47]. All sub-
jects with PTSD included in this study had CAPS scores
greater than 65 indicating severe PTSD. In addition, a
Structured Clinical Interview for DSM-IV [48] was used
to screen for the presence of Axis 1 mental disorders.
Sixty-four male subjects, comprising 32 monozygotic
twin pairs where one twin had experienced combat in
Vietnam while the other had not, participated in the
present study. The mean age of the twin pairs in which
the combat-exposed member had PTSD was 53.1 years
(SD =3.3) and the mean age of twin pairs in which the
combat-exposed member did not have PTSD was
51.8 years (SD =2.3) (F(1,76) = 3.8, p =.050). The mean
years of education was 13.5 (SD = 2.6) for combat-exposed
subjects with PTSD, 14.3 (SD = 2.8) for their non-combat
exposed co-twins, 14.7 (SD=24) for combat-exposed
subjects without PTSD, and 14.7 (SD = 2.6) for their non-
combat exposed co-twins (NS). Combat-exposed sub-
jects with PTSD had higher combat severity scores
(Mean=7.9, SD=1.9) than combat-exposed subjects
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without PTSD (Mean = 3.5, SD = 2.6) and this difference
was significant (F(1,76) =67.4, p<.001). The partici-
pants have been described in more detail by Gilbertson
et al. [29].

Oddball paradigm

Participants were seated upright in a sound-attenuated
room. E-A-RTONE (Aearo Company, Santa Barbara,
California, USA) earphones were used to present tones
binaurally. A five dB descending and ascending staircase
method was used to gauge the hearing threshold for a
1,000 Hz test-tone in each participant. All participants
completed an auditory target detection task involving
285 tone-stimulus presentations. Three distinctly pitched
tones were used: a target (2,000 Hz), a common
(1,000 Hz) and infrequent distractor (500 Hz). The en-
tire sequence included 40 target, 40 distracter and 205
common tones with a random inter-stimulus interval
varying between 1,950 and 2,050 ms. The task was
to identify the high pitched tones as quickly and ac-
curately as possible, by pressing a button with the
dominant hand. The presentation sequence was pseudo-
randomised to prevent the consecutive occurrence of
two infrequent tones. Tones were generated by STIM
software (Neuro Scan Inc, Herndon, Virginia, USA) and
tone amplitude was verified using an Abbeon AB-85
sound meter (Abbeon, Indianapolis, Indiana, USA).

EEG measurement

EEG activity was recorded from parietal sites (Pz,
P3, and P4) [49], using tin electrodes embedded in a
nylon cap (Electro-Cap International, Eaton, UK). EEG
was grounded from the forehead and referenced to
linked ear lobes. Electrooculogram (EOG) activity was
recorded at the outer canthus and infraorbitally to the
left eye. Trials with excessive eye-movement artefact
(EOG range +85 uV) were excluded from the averaging
process.

EEG impedances were approximately equal and kept
below 5 k Ohms. Signals were amplified using Coul-
bourn High Gain Bioamplifiers (Coulbourn, Allentown,
Pennsylvania, USA), band-pass filtered (0.1-150 Hz) and
digitally sampled at 1,000 Hz, with a resultant signal
sensitivity of .049 uV/bit. The EEG epoch extended
from 100 ms pre-stimulus to 900 ms post-stimulus, and
was averaged at each site according to stimulus type. It
was digitally bandpass filtered between .1 and 14 Hz
(12 dB/Oct). Peak measures for P300 were determined
from each subject’s averaged waveforms for each stimu-
lus type, using a Neuro Scan interactive scoring pro-
gram. P300 was defined as the most positive peak
between 300—-500 ms post-stimulus onset.
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MRI

A 1.5 Tesla MRI scanner (General Electric Signa System,
Milwaukee, Wisconsin, USA) was used to perform a
whole-brain scan. Automated step algorithms were used
to calculate whole brain volume. Subsequently, hippo-
campal volume was determined by a person blind to the
individual’s group characteristics, using a manual tracing
procedure [50]. Although hippocampal volume was the
focus of the present study, left and right amygdala
volumes, and total brain volume, were also measured to
provide control data [29]. The reliability of the volume
measures was confirmed by a second ‘blind’ rater as pre-
viously described [29].

Statistical analysis

Participants were classified into four groups designated
by PTSD diagnosis and combat exposure: (1) combat
veterans with current PTSD and (2) their non-combat-
exposed co-twins; (3) combat veterans without current
PTSD and (4) their non-combat-exposed co-twins. An
absolute magnitude HCV asymmetry (HCVA) measure
was created for each participant according to the for-
mula: | (right HCV - left HCV)/(right HCV + left
HCV) |.

Hippocampal volumes and P300 amplitudes at all elec-
trode sites were screened for outliers more than three
standard deviations from the mean. Square root or loga-
rithmic transformations were used as required to correct
violations of homogeneity and the Greenhouse-Geisser
epsilon correction was used for violations of sphericity.
A one-way Analysis of Variance (ANOVA) was used to
compare accuracy of target detection between groups,
and a repeated measure ANOVA was used to compare
P3 amplitude across the three electrodes.

One-way ANOVA was used to compare the total hip-
pocampal volume, and the volumes of the left and right
hippocampus, between the four groups. A one-way
ANOVA was also performed to compare the asymmetry
measures across groups. As EEG scalp potentials are not
independent, a principal components analysis was per-
formed across the P300 amplitude data to quantify the
number of independent dimensions accounting for 95%
of the data variance. A Pearson product—moment correl-
ation coefficient was used to investigate the relationship
between the magnitude of asymmetry and P300 ampli-
tude at the three parietal sites (Pz, P3 and P4) in all four
diagnosis and exposure groups separately. Finally, separ-
ate correlations were performed to evaluate whether sig-
nificant correlations could be accounted for either ‘right
side greater than left’ (R>L) or ‘left side greater than
right’ (L > R) hippocampal volume changes. The Pearson
product—-moment correlation coefficient was also used
to investigate the relationships between HC volume and
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HC asymmetry, total CAPS scores, and scores on indi-
vidual CAPS dimensions.

Results

HC asymmetry

Hippocampal volumes are presented in Table 1. There
was a significant main effect for diagnosis for right hip-
pocampal volume (F(1,66) =9.63, p =.003) and total hip-
pocampal volume (F(1,66) =8.73, p=.004). The mean
volume of the left hippocampus was also smaller in the
PTSD group but this difference did not reach signifi-
cance (F(1,66) =3.35, p=0.07). We found that seven
subjects with PTSD had a reversal of normal asymmetry
with a larger left than right hippocampus, and five had a
normal asymmetry with a larger right hippocampus.
However, when one-way ANOVAs were performed to
investigate between group differences in absolute asym-
metry, no significant differences were found between
any of the four diagnosis/exposure groups. There was no
significant difference between groups in the volumes of
the left or right amygdala or in total brain volume.

Correlations between HC asymmetry and P300 amplitude
There was no significant difference between the four
groups in performance of the target detection task or in
P3 amplitude. A principal components analysis of the
P300 data across the three electrodes demonstrated that
two components accounted for >97% of the total vari-
ance, so a Bonferroni corrected p value of<.025 was
taken as significant.

We found positive correlations between hippocampal
volume asymmetry and P300 amplitude in participants
with PTSD at sites Pz (r=.69, n=12, p<.025) and P3
(r=.64, n=12, p <.025), with higher magnitudes of hip-
pocampal volume asymmetry associated with larger
P300 values (Table 2). Neither of the two non-combat
exposed co-twin groups, nor the non-PTSD combat-
exposed group demonstrated significant correlations be-
tween these two variables. The inclusion or exclusion of
outliers did not significantly affect the results.

Comparing those with normal HC asymmetry and
those with abnormal HC asymmetry, there was no sig-
nificant difference in P300 amplitude at any electrode,
and no group difference in asymmetry of amplitude at
the individual electrodes.

HC asymmetry and symptom measures

In the PTSD group, there was no difference in CAPS scores
between those with normal vs abnormal HC asymmetry.
There was a negative correlation between total HC volume
and re-experiencing symptoms ((r=-.56, n =13, p <.043),
and between left HC volume and re-experiencing symp-
toms ((r=-.71, n =13, p < .006).
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Table 1 Mean (SD) Hippocampal volumes in monozygotic
twins with PTSD, their trauma-unexposed twins, and in
trauma-exposed and trauma-unexposed monozygotic
twins without PTSD

PTSD (n = 24) Non-PTSD (n=46)
Trauma Trauma Trauma Trauma
exposed unexposed exposed unexposed
(n=12) (n=12) (n=23) (n=23)
Right HC 332 3.26 (0.39) 3.76 361 (048)
volume (0.59) (0.54)
(ml)
Left HC 334 349 (0.57) 3.65 3,63 (0.45)
volume (0.46) (0.50)
(ml)
Total HC 6.66 6.75 (0.90) 741 7.25 (0.69)
volume (0.83) (0.93)
(ml)

Discussion

Based on the results of their meta-analysis, Woon et al.
[22] conclude that there may be a differential sensitivity
to the effects of trauma, with the right hippocampus
being more vulnerable than the left hippocampus. It
should be noted however that the subjects from the
present study were included in this meta-analysis, con-
tributing about 3% of the PTSD subjects and 11% of the
non-PTSD subjects. Our findings were consistent with
the findings of this meta-analysis in that the PTSD
group had a reversal of normal asymmetry; on average
the left hippocampus was slightly larger than the right
hippocampus. However their co-twins, and the trauma-
unexposed subjects, similarly had slightly larger mean
left than right hippocampal volumes. These differences
were small and none of these comparisons reached sig-
nificance. Our results do not support previous findings
that the right HC is more sensitive to the effects of
trauma than the left HC [22]. In our data, the mean vol-
ume of the right HC in trauma-exposed co-twins, both
with and without PTSD, was larger than the mean right
HC volume of the non-trauma exposed co-twins.

Our results did not support the hypothesis that there
would be a negative correlation between P300 amplitude
and hippocampal asymmetry. We expected that greater
asymmetry, taken to indicate greater pathology, would
correlate with a smaller allocation of attentional
resources to the working memory task. Instead, we
found that although there was no significant asymmetry
difference between the four groups, there were signifi-
cant positive correlations between hippocampal asym-
metry and P300 amplitude to target tones in participants
with PTSD, at midline (Pz) and left (P3) parietal sites.

The lack of correlation between hippocampal asym-
metry and P300 amplitude in the monozygotic co-twins
of the PTSD participants, and in the other two groups
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(including participants with combat exposure) suggests
that the correlations are associated with PTSD itself, ra-
ther than being genetically determined or related to
combat exposure. It has previously been suggested [51]
that the presence of such correlations in subjects with
psychiatric illness, but not in normal subjects, may re-
flect disease-associated pathology. This conclusion might
be strengthened if there was a correlation between P300
amplitude or the magnitude of hippocampal asymmetry,
and symptom severity. Bae et al. (2011) [42] have
demonstrated associations between P300 current source
density (CSD) in regions in the frontal, parietal and tem-
poral cortices, and various PTSD symptoms including
re-experiencing and increased arousal (positively corre-
lated with P300 CSD) and avoidance and numbing
(negatively correlated with P300 CSD). Investigation of
the associations between hippocampal volume asym-
metry, P300 amplitude, and symptom severity, was be-
yond the scope of the present study. However, further
research is required looking at the links between brain
structure, brain function, and measures of disease sever-
ity. In addition, we did not have information about
handedness, although co-twins would be expected to be
matched for handedness. The proportion of people with
mixed or right hemisphere dominance in the general
population is small so it is unlikely that the pre-
sence of such subjects would have affected the overall
conclusions.

Whilst most ERP studies of subjects with PTSD have
found P300 amplitude reduction, an increase in P300

Table 2 Bivariate correlations: Hippocampal asymmetry v
P300 amplitude

Pearson correlation Sig. (2-tailed)
Asymmetry magnitude
1: PTSD/Exposed Group N =12
Pz P300 0.69 0.01**
P3 P300 0.64 0.03**
P4 P300 033 029
2: Non-PTSD/Non-Exposed Group (co-twins of Group 1) N=12
Pz P300 -0.13 0.70
P3 P300 034 0.28
P4 P300 041 0.18
3: Non-PTSD/Exposed Group N =23
Pz P300 0.12 0.63
P3 P300 0.00 0.98
P4 P300 -0.10 0.67
4: Non-PTSD/Non-Exposed Group (co-twins of Group 3) N =23
Pz P300 -0.21 037
P3 P300 0.01 097
P4 P300 0.02 0.95
**p < 025
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amplitude to trauma-neutral stimuli has been reported
in a population of nurses who developed PTSD follow-
ing exposure to wounded combatants in Vietnam [52].
P300 amplitude has been shown to be increased to
trauma-relevant stimuli in people with PTSD, indicating
an increase in allocation of attention resources towards
elements in the environment that may be immediately
threatening [43].

It is possible that the larger P300 in our subjects with
greater hippocampal asymmetry might reflect a greater
allocation of attention, in an effort to overcome difficul-
ties performing the task. Amman et al. [53] report that
in multiple sclerosis, a disease that is associated with
neuropsychological impairment, patients showed stron-
ger fMRI activation change in the right parahippocampal
cortex and in the middle and medial frontal regions dur-
ing the performance of simple tasks involving attention
and working memory, compared to normal controls.
There was a linear increase in activation with increasing
task complexity, until the task load became excessive.
Similarly, Fabiani and Friedman [54] found increased
P300 amplitude was associated with poorer performance
on the Wisconsin Card Sorting Test.

Our results might therefore indicate that the subjects
with PTSD needed to give greater attention to the task
in order to achieve normal results. Both auditory and
visual stimulus processing in working memory are asso-
ciated with hippocampal activation [55], and the hippo-
campus is involved in the processing mechanisms that
determine attentional allocation and P300 amplitude
[56]. A large asymmetry of hippocampal structures may
necessitate a change in the neurophysiology of non-
traumatic stimulus encoding, reflected in the enlarged
P300 components.

Working memory capability has been shown to be
decreased in those individuals who experience intrusive
memories, indicating that a proportion of finite working
memory resources is required during re-experiencing of
traumatic memories, leaving fewer resources available
for updating online content [57]. Nadel et al. [5] have
shown that the hippocampus is intimately related to the
processing and retrieval of spatial and episodic memor-
ies, long after they have been established, supporting the
role of the hippocampus in the re-experiencing of intru-
sive memories. Our PTSD subjects may therefore have
less capacity to process non-trauma related stimuli, be-
cause of the ongoing processing of intrusive trauma-
related material. As noted above, this could result in a
greater allocation of effort, to overcome these difficulties.
Our results are consistent with the proposition that the
increased allocation of attention was maximal in those
with greatest hippocampal pathology, reflected in greater
hippocampal asymmetry. In PTSD, the availability of
hippocampal neurons required for encoding the stimuli
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in the oddball task may act as a rate-limiting step in
non-trauma related information processing. In addition,
the correlation between smaller HC volume and re-
experiencing symptoms could suggest that HC damage
is associated with an inability to process and eventually
recover from traumatic memories.

Whilst this study focussed on hippocampal pathology,
following on from previous research demonstrating hip-
pocampal abnormalities associated both with trauma,
and with PTSD, there is also evidence of volume reduc-
tions in other brain regions in PTSD. Araki et al. (2004)
[58] investigated the relationship between lower P300
amplitude and anterior cingulate grey matter volume in
people who developed PTSD as a result of the Tokyo
subway sarin attack. The numbers were quite small (8
subjects with PTSD and 13 subjects without PTSD who
had been exposed to the sarin attack). There was a
trend-level correlation (p =0.077) between P300 ampli-
tude at Pz and left anterior cingulate grey matter vol-
ume. Further research into brain structure and function
in PTSD should therefore extend to other brain regions
beyond the hippocampus.

Conclusions

In conclusion, the hippocampus is clearly sensitive to
the effects of trauma, with changes in both structure and
function. Further, smaller hippocampal volume appears
to be associated with vulnerability to developing PTSD
when the person is exposed to trauma. Hippocampal
volumes and hippocampal asymmetry have therefore
been taken as reflecting both genetically determined vul-
nerability and trauma-related damage to the hippocam-
pus. Our monozygotic twin sample enables us to control
for genetic factors, so hippocampal volume differences
are therefore related to trauma exposure, in some cases
with the addition of the pathological processes asso-
ciated with PTSD. The oddball P300 event related po-
tential reflects the allocation of attentional resources
during working memory processing, and hippocampal
structures make a substantial contribution to P300 amp-
litude. Previous research has shown that the P300 is sen-
sitive to the effects of PTSD [38]. Our results show that,
in people with PTSD only, there is a positive correlation
between hippocampal asymmetry and allocation of at-
tentional resources. This could be because a proportion
of finite processing capacity is being utilised by the con-
stant re-experiencing of traumatic memories, leaving
limited resources for non-trauma related cognitive tasks.
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