
Biology of 
Mood & Anxiety Disorders

Huys et al. Biology of Mood & Anxiety Disorders 2013, 3:12
http://www.biolmoodanxietydisord.com/content/3/1/12

RESEARCH Open Access

Mapping anhedonia onto reinforcement
learning: a behavioural meta-analysis
Quentin JM Huys1,2,3,4*, Diego A Pizzagalli5, Ryan Bogdan6 and Peter Dayan1

Abstract

Background: Depression is characterised partly by blunted reactions to reward. However, tasks probing this
deficiency have not distinguished insensitivity to reward from insensitivity to the prediction errors for reward that
determine learning and are putatively reported by the phasic activity of dopamine neurons. We attempted to
disentangle these factors with respect to anhedonia in the context of stress, Major Depressive Disorder (MDD), Bipolar
Disorder (BPD) and a dopaminergic challenge.

Methods: Six behavioural datasets involving 392 experimental sessions were subjected to a model-based, Bayesian
meta-analysis. Participants across all six studies performed a probabilistic reward task that used an asymmetric
reinforcement schedule to assess reward learning. Healthy controls were tested under baseline conditions, stress or
after receiving the dopamine D2 agonist pramipexole. In addition, participants with current or past MDD or BPD were
evaluated. Reinforcement learning models isolated the contributions of variation in reward sensitivity and learning
rate.

Results: MDD and anhedonia reduced reward sensitivity more than they affected the learning rate, while a low dose
of the dopamine D2 agonist pramipexole showed the opposite pattern. Stress led to a pattern consistent with a mixed
effect on reward sensitivity and learning rate.

Conclusion: Reward-related learning reflected at least two partially separable contributions. The first related to
phasic prediction error signalling, and was preferentially modulated by a low dose of the dopamine agonist
pramipexole. The second related directly to reward sensitivity, and was preferentially reduced in MDD and anhedonia.
Stress altered both components. Collectively, these findings highlight the contribution of model-based reinforcement
learning meta-analysis for dissecting anhedonic behavior.

Keywords: Anhedonia, Major depressive disorder, Depression, Reinforcement learning, Reward learning, Prediction
error, Computational, Meta-analysis, Reward sensitivity, Learning rate

Background
Anhedonia is one of the cardinal symptoms for a clinical
diagnosis of major depressive disorder (MDD; [1-3]) and
refers to an inability to experience pleasure or a dimin-
ished reactivity to pleasurable stimuli. It is typically mea-
sured by verbal reports. In people subjectively reporting
anhedonia, reward feedback objectively has less impact
in a variety of behavioural tasks [4-15]. However, mod-
ern accounts of decision-making distinguish structurally
different ways in which this reduction might be realized,
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and precisely which of these is associated with anhedonia
remains unclear.
Here, we attempt to distinguish two critical factors.

The first factor is a reduction in the primary sensitiv-
ity to rewards. This is possibly the closest behavioural
equivalent to the notion of a reduction in consumma-
tory pleasure. Instruments measuring anhedonia, such as
the relevant subscores of the Beck Depression Inventory
[16] or the Mood and Anxiety Symptom Questionnaire
(MASQ) [17] typically focus on this factor [18]. The sec-
ond factor is an alteration in participants’ ability to learn
from reward feedback. This is emphasized by preclinical
animal models of depression [19-22] and, because of the
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close association between dopamine (DA) signalling and
reward learning [23-27], by neurobiological accounts link-
ing anhedonia to DA [11,14,28-35]. It is most important
to separate these factors, since they are likely to be asso-
ciated with radically different ætiologies and therapeutic
routes.
The distinction between these two factors is sharp in

themathematical formulation of reward learning based on
prediction errors that underpins the account of DA activ-
ity [23-27], and is itself based on principles articulated
in psychological [36] and engineering [37,38] theories of
learning. Consider an experiment in which a reward of
a given magnitude is given stochastically on some trials:
where rt = 1 if the participant did receive the reward
on trial t, and rt = 0 if it did not. We write ρ for the
value the participant assigns to this reward. The partici-
pants are assumed to build and maintain an expectation
(Qt) of the average reward it might gain on this trial, by
means of a prediction error on trial t which is the differ-
ence δt = ρrt−Qt between the obtained ρrt and expected
Qt reward. This prediction error can be used to improve
the expectations adaptively [39] by adding the error to the
previous expectation Qt+1 = Qt + εδt , where 0 ≤ ε ≤ 1
is a learning rate. This reduces the prediction error over
time, at least on average.
The critical factors that might be associated with anhe-

donia are the two parameters ρ and ε in the above
expressions. First, ρ is a measure of primary reward sen-
sitivity – the larger ρ, the more sensitive the participant
is to a reward of a given magnitude, or the greater the
internal worth of an external reward. We comment on
the difference between liking and wanting rewards later
[40]. Second, the term ε governs how reward prediction
errors influence learning. Evidence suggests that the pha-
sic activity of DA cells is roughly proportional to δt ; thus,
alterations in the amount of DA released per spike, or
in the sensitivity of postsynaptic receptors should behave
like a change in the learning rate ε and affect the speed at
which reward affects behaviour [41].
These quantities are formal parameters of a reinforce-

ment learning rule. The question thus arises whether they
can actually be distinguished in experimental practice.
In this paper, we focus on objective measures of learn-
ing behavior. Crudely, since ρ only affects one term in
δt , whereas ε controls the effect of the whole of δt on
Qt+1, these quantities are theoretically distinguishable.
A change in reward sensitivity leads to the asymptotic
average value of Qt being different. However, a change
in learning rate alters the speed at which this asymptote
is reached. More particularly, if the behavioural impacts
of anhedonia were due to a DA deficit, the extent of
anhedonic symptoms might correlate preferentially with
the learning rate ε. If instead its effects were due to a
change in primary reward sensitivity, then one would

expect the impact to concentrate on the reward sensitiv-
ity ρ. To examine this, we re-analyzed what is perhaps
the most substantial body of data on reward learning
in anhedonia, namely the probabilistic reward task of
(Figure 1A-B). Behaviour in this task has previously been
quantified by dividing it into three blocks and examin-
ing the evolution of a response bias across the blocks
(Figure 1C). However, such measures cannot easily dis-
entangle ρ and ε: Figure 1D-E shows that varying both
parameters can roughly qualitatively explain the observed
patterns. However, there are subtle differences to do with
the asymptote of learning that provide us with a window
of opportunity.
The fact that varying either parameter can lead to

similar qualitative patterns shows that the two parame-
ters play partially replaceable roles and may not be fully
separable [42]. Any separation is likely to require sub-
stantial amounts of data. We therefore here fitted trial-
by-trial individual reinforcement learning (RL) models in
a meta-analytic manner to a series of six experiments
involving 392 experimental sessions across 313 differ-
ent participants. Model fitting allows for comprehensive
tests of the ability of each hypothesis to account for
the entire dataset. Bayesian model comparison ensures
that the conclusions are based on parsimonious accounts
of the data, avoiding overfitting and overly complex
explanations [42-46].
To maximise the chance of identifying specific contri-

butions of learning rate and reward sensitivity, we jointly
analysed a series of datasets that are likely to differen-
tially affect the two parameters (Table 1). Three of these
probed anhedonia in the context of depression; one in
bipolar disorder. A further dataset probed the effect of
a dopaminergic manipulation, which we expected to pri-
marily affect ε. A final dataset probed the effect of stress,
which is prominently involved in the pathogenesis of
depression, and which we have previously suggested may
reduce phasic DA bursts via an increase of tonic DA
release [47].
Our main result is that measures of anhedonia and

depression preferentially affected the reward sensitivity ρ,
while a dopamine manipulation by pramipexole mainly
affected the learning rate ε. Stress, however, affected both
reward sensitivity and the learning rate. There was no
difference in these two parameters in euthymic bipolar
individuals, or those with a past history of depression.

Methods
Task and data
In this paper, we re-analyse 392 sessions of behavioural
data derived from a probabilistic reward task ([10];
adapted from [55]), which is displayed schematically in
Figure 1A. Central to the task is that an asymmetrical rein-
forcement scheme was used to induce a response bias:



Huys et al. Biology of Mood & Anxiety Disorders 2013, 3:12 Page 3 of 16
http://www.biolmoodanxietydisord.com/content/3/1/12

500 ms 

1750 ms 

500 ms 

100 ms 

Correct!!
You won 
5 cents

short?
long?

Long correct: 
Short correct: 

75% rewarded
30% rewarded

Long correct: 
Short correct: 

30% rewarded
75% rewarded

Long = rich: 

Short = rich: 

1 2 3
0

0.1

0.2

0.3

0.4

0.5

Block

R
es

po
ns

e 
B

ia
s

1 2 3
0

0.1

0.2

0.3

0.4

0.5

Block

ε=0.03, γ=2

1 2 3
0

0.1

0.2

0.3

0.4

0.5

Block

ρ=2, γ=2

Control
Treatment

ρ=2
ρ=1

ε=0.04
ε=0.01

B

A C D E

F

Altering 
learning rate

Altering 
reward sensitivity

Prototypical
empirical pattern

Healthy Stress PPX Hx MDD BPD

0.6

0.8

1

F
ra

ct
io

n 
co

rr
ec

t

Figure 1 Task and typical behaviour. A: Task. Each trial had the following structure: 1) 500 ms presentation of a central fixation cross; 2) 500 ms
presentation of face without a mouth; 3) 100 ms presentation of long (13 mm) or short (11.5 mm) mouth inside the face; 4) participants reported
whether the mouth was long or short by key-press (‘Z’ or ‘/’ on US keyboard, counterbalanced); 5) Face without mouth remained on screen until
participant response. Short and long stimuli were each presented 50 times per block in pseudorandom sequence avoiding more than three
repetitions in a row. Adapted from [10]. B: Reward schedule. One response (counterbalanced across participants) had a higher reward expectation.
Correct identification of that “rich” stimulus was more likely to be rewarded (75% probability) than correct identification of the other, “lean”, stimulus
(30% probability). There was no punishment. If in doubt, choosing the more rewarded stimulus was beneficial. C: Surrogate simulated data showing
prototypical response evolution. The dark bars show a hypothetical control group, developing a strong response bias towards the more rewarded
response over the three blocks of 100 trials. The light bars show a prototypical treatment group with a reduced response bias. D-E: Surrogate
simulated data generated from a simple reinforcement learning (‘Stimulus-action’) model. Both a reduction in reward sensitivity (D) and a reduction
in learning rate (E) can roughly reproduce the pattern in the data (C). F: Percent correct responses for each of the 392 experimental sessions. Each
black point represents one experimental session. Vertical bars demarcate datasets. Red horizontal line represents chance performance for each
session. Four participants performed below chance (red). Sixty-three out of 392 experimental sessions were not fitted better than chance by model
‘Belief’ (binomial test; blue). Of these, 58 out of 63 were in the Stress dataset, in which performance was generally worst.

Correct responses to one stimulus, designated “rich”, were
more likely to be rewarded than correct responses to the
other stimulus, designated “lean” (Figure 1B). No feedback
was given on other trials, including incorrect trials, and no
explicit information about the asymmetry was provided.
Participants were explicitly encouraged to win as much
money as possible, and so could benefit from reporting
the rich, rather than the lean, stimulus when in doubt.
One measure of the tendency to do this is the response
bias [10]:

1
2
log

(
n(a1|sr) n(a1|sl)
n(a2|sr) n(a2|sl)

)
(1)

where sr and sl indicate presentation of the rich and lean
stimulus, respectively, a1 and a2 are the two possible key
presses, and n(a|s) is the number of times a particu-
lar choice was made in response to that stimulus. Each
count n was augmented by 1

2 to avoid numerical insta-
bilities. Outlier trials with very short (< 150 ms) or very
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Table 1 Datasets used

Name Manipulation Reference Participants #

Healthy High vs low BDI scores [10] 57

Healthy volunteers. Payment: US$5 and course credit.

MDD MDD vs controls [48] 48

23 participants during an episode of MDD and 25 controls matched for age, sex, education, ethnicity and marital
status. MDD participants met DSM-IV criteria for MDD, had Hamilton Rating Scale for depression scores ≥ 17, and
no other axis I comorbidities except for anxiety. Inclusion required a minimal drug-free period of 2 weeks. Payment:
US$10/hour plus 5US$ average task earnings.

Hx History of MDD vs no history [49] 85

Currently healthy participants with and without a history of major depressive disorder (MDD). Participants received
US$15/hr in compensation for their time, as well as their task “earnings” (on average, US$5).

BPD BPD vs controls [50] 19

Euthymic outpatients (matched to the same 25 controls as in dataset ‘MDD’). The outpatients had a long-standing
diagnosis of Bipolar Disorder, currently satisfying criteria on the Affective Disorder Evaluation, which contains mod-
ified SCID mood and psychosis modules. Patients were classified as euthymic if they currently Young Mania Rating
Scale [51] score <12, and if their Hamilton Rating Scale for Depression [52] score was below 8. Exclusion criteria
included other axis I disorders, a past history of MDD, substance abuse and ECT in the past 6 months. Participants
were paid US$25 for participation and task earnings.

PPX Pramipexole vs placebo [53] 24

Healthy volunteers received either placebo or a single dose of the D2/D3 agonist pramipexole hydrochloride (PPX)
0.5 mg 2 hours prior to the task. At this low dose, PPX is thought to reduce phasic DA release through autoreceptor
stimulation. Payment: US$ 40 for the pharmacological session and US$24.60 for the task session.

Stress Threat-of-shock acute vs no stressor [54] 79(x2) +1

Healthy volunteers took part in the task twice (onemissing session), once in a no-stress condition and once in a stress
condition. Participants were told that poor performance on the task might lead to a shock being delivered through
electrodes attached to the back of their neck. In the stress condition, they were told that this was quite likely, whereas
they were told that no shock would be delived in the no-stress condition. No shocks were actually delivered. Notably,
the version of the task used in this study was more difficult, with the difference in size between long and short
mouth being smaller. This resulted in fewer correct discriminations (see Figure 1F). Payment: either course credit or
US$10/hour as well as money “won” during the task (US$10.60 on average).

Full details of all the patient and control groups are provided in the original publications.

long (> 1500 ms) reaction times are excluded (see [10]
for a full description of the 2-step procedure used to
exclude trials with outlier responses). Figure 1F shows the
fraction of correct responses for each of the 392 individ-
ual experimental sessions. In addition to the computer
task, participants completed self-report questionnaires
(see Table 2). The datasets and manipulations are shown
in Table 1. Briefly, the studies examined the effect of
i) depression (categorical diagnosis according to DSM-IV;
continuous quantification based on self-report measures
of depressive features and anhedonia; and past history of
MDD); ii) bipolar disorder, currently euthymic (categor-
ical diagnosis according to DSM-IV); iii) stress; and iv)
low-dose D2 agonist pramipexole. The low dose (0.5 mg)
of pramipexole was assumed to reduce phasic DA bursts
to unexpected rewards due to presynaptic (autoreceptor)
activation [53,56]. We note that the dataset ‘Stress’ differs

from the others because amore difficult version of the task
was used [54].

Reinforcement learning models
Reinforcement learning models account for every choice
on every trial for every participant individually. Here,
we describe the model for one particular participant.
‘Weights’ for emitting a particular choice are updated after
every trial to predict the next choice. We consider a set of
factors that might affect the weights, and use complexity-
sensitive model comparison methods to try to identify
the importance of each. Briefly, write at for the partic-
ipant’s choice on trial t (key ‘/’ or ‘z’), and āt for the
choice not taken on that trial (key ‘z’ or ‘/’). If stimulus st
(long or short mouth) was presented, the model assigns
to at a probability p(at|st). This probability depends on
the ‘weights’ Wt(at|st) and Wt(āt|st) assigned to each
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Table 2 Sample characteristics: psychometric measures

Measure N mean median 1st quartile 3rd quartile

BDI 366 8.3 6 1 11

BDA 281 1.9 0 1 3

BDI\A 281 6.9 1 5 10

Generalized distress depression (GDD) 276 23.2 16 20 30

Generalized distress anxiety (GDA) 276 18.8 15 18 24

Anxious anxiety (AA) 276 53.7 45 53.5 65

Anhedonic Depression (AD) 276 21.1 17 20.5 25

Full (BDI + BDA + MASQ subscores) 255

BDI is the total Beck Depression Inventory II [16]. BDA stands for the anhedonic subscore of the BDI consisting of the sum of items 4 (loss of pleasure), 12 (loss of
interest), 15 (loss of energy) and 21 (interest in sex). BDI\A is the total BDI score without the anhedonic component (BDI\A = BDI - BDA). Mood and Anxiety Symptom
Questionnaire (MASQ) subscores [17] were anxious arousal (AA), anhedonic depression (AD), general distress anxiety (GDA) and generalised distress depression (GDD).

choice when presented with stimulus st . The mapping
fromweight to probability is made via a ‘softmax’ function
so that a choice at will be expected to be emitted more fre-
quently the bigger the difference between its weight and
the weight of the alternative choice, or more specifically:

p(at|st) = 1
1 + exp [−(Wt(at , st) − Wt(āt , st))]

(2)

The choice weights themselves change over time (hence
the subscript on W) and are composed of several terms,
whose contributions differ for the different models. The
models are variants on an underlying full model called
‘Belief ’, for which

Wt(at , st) = γI(at , st)+ζ Qt(at , st)+(1−ζ )Qt(at , s̄t)
(3)

The first of these terms, γI(at , st), depends on instruc-
tions: I(at , st) = 1 if at is the instructed choice for stimu-
lus st (for instance pressing ‘z’ for the long mouth) and is
zero otherwise. The parameter γ thus determines the par-
ticipants’ ability to follow the instructions. The bigger γ ,
the larger the contribution from I(at , st), and hence the
instructed response contributes more to choice. Impor-
tantly, this instructed choice is symmetric between rich
and lean stimulus; thus this term leaves the asymmetry to
the other terms.
The second and the third term depend on the expected

reward Qt(at , st). This captures the effect of the experi-
enced rewards on previous trials, just as described in the
introduction (except allowing different predictions for the
different actions and stimuli). Qt(at , st) depends on four
factors: the binary sequence rt up to that point in time,
which indicates whether a reward was delivered or not, an
initialQ0 value, the learning rate ε and the subjective (i.e.
internal to the participant as opposed to the external mag-
nitude in a fixed number of cents) effect size of a reward
ρ, which we identify with reward sensitivity.

After every choice, thisQ value is updated according to
the prediction error δt = ρrt − Qt(at , st) as follows:

Qt+1(at , st) = Qt(at , st) + εδt (4)

That is, after every trial, the expected reward Q(a, s) for
choice a for stimulus s is increased towards the subjec-
tive reward size ρ if a reward is received (rt = 1) but
the expectation Q was lower than ρ, and it is decreased
towards zero if no reward was received (rt = 0). The larger
ρ, the larger the effect of rewards on choice propensities.
As the learning rate ε approaches 1, learning is so fast
that theQ values are simply the last experienced outcome
for each choice-action pair. For 0 < ε < 1, expectations
represent exponentially weighted averages over the recent
outcome history. Amultiplicative change to δ is equivalent
to a change in ε.
In the task, the mouth is only shown for a very short

period of time. Thus participants cannot be sure which
stimulus was actually presented, and, as experimenters,
we cannot know what the participants perceived. This
uncertainty has two consequences. First, it implies that
the factor γ which governs the effect of the instructions,
should be less than∞. Second, the participants will not be
sure which valueQt(at , long) orQt(at , short) and instruc-
tion weight I(at , st) to employ in their choice, or whichQ
value to update using Equation 4. We capture this effect
by assuming that they know which stimulus-choice pair to
update in terms of learning (Equation 4), but that when
choosing, they use a form of Bayesian decision theory [57]
to combine estimates based on both possibilities. That is,
we use a parameter 0 ≤ ζ ≤ 1 to represent participants’
average uncertainty about which stimulus was actually
presented. Assume participants expected .75 unit reward
for pressing button ‘z’ given the long mouth (Q(z, long) =
0.75), and 0 given the short stimulus (Q(z, short) = 0).
If they now believed with a probability ζ that they had
seen stimulus s and with a probability 1 − ζ that they had
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seen stimulus s̄, then their expectation for pressing but-
ton ‘z’ would be ζQ(z, long) + (1 − ζ )Q(z, short) = .75ζ .
This is the contribution ofQ in Equation 3. We write ζ as
applying to the Q term only. We could also apply it to the
instruction term I(a, s), but this would be equivalent to
rescaling γ (see Additional file 1).
Equations 3 and 4 comprise the full model ‘Belief ’. We

also considered two simpler variants, both of which had
one fewer free parameter, and one more complicated vari-
ant, with an extra parameter. First, at ζ = 1, participants
are certain, and use the correct stimulus-action value to
guide their choice. The model in which this value is forced
is called ‘Stimulus-action’. At ζ = 0.5, they are indis-
criminate between the two stimuli. This is model ‘Action’
because they learn only about the values of choices, inde-
pendently of stimuli. Finally, the more complex model
‘Punishment’ is based on the possibility that participants
might treat a non-reward as a punishment, so making
δt = ρrt+ρ−(1−rt)−Qt(at , st), where ρ > 0.Wemention
other possible models in the discussion.

Model fitting & comparison
Bayesian model comparison at the group level and
model fitting procedures are described in detail in
[58]. The key equations are provided in the Addi-
tional file 1. Briefly, model fitting was performed by
Expectation-Maximisation to find group priors and indi-
vidual (Laplace) approximate posterior distributions for
the estimates for each parameter for each participant.
For models ‘Action’ and ‘Stimulus-action’, this comprised
parameters {Q0, ρ, ε, γ }; for model ‘Belief ’ it addition-
ally included parameter ζ , and for model ‘Punishment’
also ρ−. All parameters were represented as non-linearly
transformed variables with support on the real line and
normally distributed group priors.
More complex models will often fit the data better

because they have more freedom. However, model com-
plexity is better assessed by methods other than counting
parameters [43,59]. Bayesian model comparison is a prin-
cipled way of assessing model parsimony by computing
the posterior probability of each model given the entire
dataset for all participants. Because exact computation
of these quantities is intractable, individual parameters
were integrated out by sampling from the fitted priors,
and a standard Bayesian information criterion (BIC)-like
approximation was employed at the group level [43]. This
procedure results in a measure we term iBIC (for ‘inte-
grated BIC’) which captures how well each model explains
the data given how complex it is [58]. The smaller this
number, the greater the model parsimony. The difference
between two such values, �iBIC, is an approximation of
the models’ relative log Bayes factor.
The same principles of model comparison also apply

to the categorical question whether two groups differ in

terms of their parameters. That is, when asking whether
group A and B differ in terms of their reward sensitivity ρ

or in terms of their learning rate ε, the correct approach
is to compute the posterior likelihood of models incorpo-
rating these hypotheses about group differences. That is,
we computed pairs of models for each dataset: in the first
model of each pair Mρ , which allows group differences
in ρ, participants share a common prior for all parame-
ters except for ρ, for which the two groups have separate
priors. In the second model Mε , participants similarly
share a prior for all parameters except for ε. Computing
the Bayes factors (�iBIC) values for these two models rel-
ative to each other indicates whether group differences in
one or the other parameter provide a more parsimonious
account of the entire dataset while taking into account
the relative flexibility each parameter accords the model
and interactions between parameters. The Bayes factors of
these models relative to the original model with no group
separation, indicate whether the groups significantly differ
in either characteristic.

Regression analyses
After model validation, we first assessed inter-correlations
between specific questionnaire measures (AD, BDA,
GDD, BDI\A, AA, GDA) and reward sensitivity or learn-
ing rate in the entire sample using one multiple linear
regression analysis for ρ and one for ε (regstats.m
in Matlab V7.14). However, this analysis neglected two
aspects of the data: first that the questionnaire data are
likely correlated; and secondly that parameters for dif-
ferent participants are estimated with different degrees
of confidence. We therefore ran a weighted hierarchical
multivariate regression. This is equivalent to a standard
hierarchical multivariate regression, except that parame-
ters were weighted by the precisions with which they were
estimated (see [60] for details). Note that parameters are
represented in the transformed space throughout to avoid
issues with non-Gaussianity.

Results
Model validation
We built a set of models that embody key hypotheses
about the course of learning in the different groups and fit-
ted them to the data. The models parameterize the type of
learning performed by participants, allowing us to assess
whether they attach rewards to stimulus-action pairs; or
just to actions, or to a mixture of the two. We also test the
status of ‘no reward’: do participants treat this outcome
as a punishment, reducing the probability of the associ-
ated action, or do they treat it as a non-informative null
outcome, as intended?
Since we are interested in understanding the character-

istics of groups of individuals, we need to ascertain at the
group, rather than at the individual level, which model
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does best [43,45,58]. We indeed found that, taking suit-
able account of complexity, a single model did capture all
groups satisfactorily, allowing for a common and inter-
pretable semantics for the parameters. These so-called
random effects models capture inter-subject variation in a
way that allows for differences in the extent to which indi-
vidual participants’ data constrain the parameters. When
we perform correlation analyses (below), we weigh param-
eters according to the precision with which they were
inferred.
The results are shown in Figure 2A. The most par-

simonious account of the data was provided by model
‘Belief ’. This conclusion rests on the group-level Bayes fac-
tors iBIC (see Methods and Additional file 1 for further
details). This compares the approximate posterior proba-
bility of each model given the data to that of model ‘Belief ’.
Two key aspects of this quantity are that 1) it punishes
overly complex models; 2) it assesses this at the group,
rather than the individual level. The higher this number,
the poorer the combination of model fit and model sim-
plicity. Differences above 10 are typically considered to be
strong evidence for one model over the other [43].
Both the standard Rescorla-Wagner model ‘Stimulus-

action’ with separate stimulus-choice values Q(s, a), and
model ‘Punishment’, which treats trials on which no
reward was given as punishing, performed poorly with
much worse iBIC values. This suggests that participants
were not able to treat the two stimuli as entirely sepa-
rate; and that they did not treat the absence of rewards
as punishments with aversive properties. Model ‘Action’,
which assumes that participants learn only action val-
ues, and thus do not separate between stimuli at all in
the asymmetric component of choice (ζ = 0.5) was
an improvement over the basic model ‘Stimulus-action’
(ζ = 1) but came a distant second to the model
‘Belief ’ (ζ inferred for each session). Indeed, the belief
parameter ζ was broadly distributed around 0.5 (mean
0.53, standard deviation 0.13). That is, on average, par-
ticipants behave as model ‘Action’, neglecting the stim-
uli when learning and forming expectations. Individually,
however, there was variability in how well they were able
to discriminate the stimuli.
Figure 1F shows the probability of performing a cor-

rect choice for all participants in all datasets, with those
not predicted better than chance by model ‘Belief ’ circled
in blue. This model correctly predicted significantly more
choices than chance (binomial test, p < .05) for most
experimental sessions (329 out of 392; black dots). Due to
a smaller difference between long and short mouth, and
hence a more difficult perceptual discrimination problem
(Table 1), participants in the stress dataset– whether in
the stress or the no stress condition–showed on average
a lower probability of correct choice. They were con-
sequently less well predicted by all models, but model

‘Belief ’ still gave the best account of these data too (see
Additional file 1: Section S2.1). Figure 2B shows that, as
intended, the overall probability correct was captured by
the instruction sensitivity parameter γ (Pearson correla-
tion 0.93, p < 10−20), which in turn frees the other param-
eters to capture trial-to-trial variation in the behaviour
contingent on the reward outcomes.
Finally, Additional file 1: Section S2.2 also provides the

results of a resampling analysis. This shows that if the
model is run on the task, it spontaneously generates data
that looks similar to the experimental data.

Regression analyses
Given that model ‘Belief ’ captured the data satisfactorily,
we proceeded to analyse the relationship between model
parameters and self-report questionnaire measures. Our
aims were primarily to identify correlations between
measures of anhedonia and learning rates or reward sen-
sitivities. A standard, unweighted, multiple linear regres-
sion analysis revealed a significant negative correlation
between ρ and anhedonic depression (AD), the most
specific measure of anhedonic symptoms available to us
(p = 0.004; uncorrected for multiple comparisons). There
was no correlation between ρ and other questionnaire
measures, and no correlation between the questionairre
measures and the learning rate ε (all p > 0.1). Partici-
pants in the ‘Stress’ dataset were tested twice. Repeating
this analysis using only the session without stress yielded
similar results (p = 0.007 for the correlation ρ vs AD, all
other p > 0.09).
As expected, questionnaire scores were substantially

correlated (Figure 3A), and the parameters of different
experimental sessions were inferred with varying cer-
tainty. We therefore additionally orthogonalized the three
anhedonic measures (BDA, GDD, AD) with respect to
all the three other measures (BDI\A, AA, GDA) and fit
a weighted generalised linear model (GLM). Figure 3B
shows that anhedonic depression AD remained signifi-
cantly and negatively related to the reward sensitivity ρ

(p = 0.005, Bonferroni-corrected for 8 comparisons). No
other correlation survived correction for multiple com-
parisons (all p > 0.1). In particular, no measure of anhe-
donia was associated with the learning rate ε. Figure 3C
shows a scatter plot of AD scores vs. reward sensitivity
with dot size proportional to the weight (inverse variance)
in the weighted regression analysis.
Next, there was a negative linear correlation between ρ

and ε of -0.41 (p < 0.0001; Figure 3D). To further question
the selectivity of the correlation between AD and ρ, we
orthogonalized ρ with respect to ε in addition to orthog-
onalising as above. This again yielded an (unweighted)
significant correlation of AD with ρ (p = 0.004, multi-
ple weighted linear regression, uncorrected for multiple
comparisons), with no other correlations significant. The
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reverse orthogonalization did not yield any significant
correlations with ε.
At least part of the correlation between ρ and ε arises

because the the two parameters can explain similar fea-
tures of the data, i.e. alterations in one parameter can

be compensated for by alterations in the other parameter
(see Figure 1). To establish whether the association
between AD and the reward sensitivity parameter was due
to real features in the data, rather than due to inference
issues, we asked whether the correlations with question-
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naire measures remained stable and identifiable in the
surrogate data. For each of the 70 surrogate datasets
of 392 experimental sessions, we repeated the standard,
unweighted multiple linear regression. Figure 3E shows
the distribution of p values for the correlation of AD with
ρ and ε. While the median p value for the correlation
between ρ and AD was 0.04, that for ε and AD was 0.71.
Finally, all correlation analyses using the reward sensi-

tivity and learning parameters inferred from the second-
best model ‘Action’ yielded the same results, showing
that the results are not dependent on a particular model
formulation.

Categorical comparisons
We next examined how learning rate and reward sensi-
tivity were affected by the factors explored in each of the
individual datasets. For each dataset, we compared two
models: one which assumes that the two experimental
groups differed in terms of ρ, the other in terms of ε.
Figure 4 shows the Bayes factors for models Mρ com-

pared with Mε for each of the individual datasets. Given
the correlation results, we additionally performed a com-
parison between all participants with the 20% highest and
lowest AD scores. Bayes factors above 20 (or below 1/20)
are very strong evidence in favour of a hypothesis [43],
while likelihood ratios of 3 to 10 (or the inverse) are weak
evidence. We found strong evidence that MDD and AD
were better accounted for by a change in reward sensitiv-
ity ρ, rather than learning rate ε. The opposite was true for
pramipexole, which mainly acted by reducing the learning
rate ε.
However, the Bayes factors comparing models Mρ and

Mε to the basic ‘Belief ’ model without split parameters

were all≤ 3. Thismeans that there was no strong evidence
that either of these parameters categorically separates any
two groups. Stress appeared most likely to have a gen-
uinely shared effect on both parameters. Participants with
a history of depression, or currently euthymic bipolar par-
ticipants showed weak evidence of reductions in reward
sensitivity. Note that all these ratios are by necessity
numerically more modest than those in Additional file 1:
Figure S1 because they are inferred from far less data.

Discussion
Our results suggest that anhedonia (as measured by AD)
and MDD affect appetitive learning more by reducing
the primary sensitivity to rewards ρ than by affecting
the learning rates. Non-significant trends for such an
effect were observed for participants with a past history
of depression, and amongst euthymic bipolar disorder
patients. By contrast, a dopaminergic manipulation was
found to preferentially affect the speed of learning, ε.
Acute stress had no preferential effect on reward sensitiv-
ity or learning rate. These two parameters appear to be
state, rather than trait measures: Neither a past history of
depression, nor one of BPD, had a significant effect on ρ

or ε.

Anhedonia
Two self-report measures of anhedonia were used in this
paper: the anhedonic depression subscore of the MASQ
questionnaire, and the anhedonic subscore of the BDI.
The former was clearly related to the reward sensitivity ρ.
This subscore quantifies participants’ verbally expressed
inability to experience pleasure, and so might be expected
to capture something akin to consummatory ‘liking’ [40].
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Note, however, that various studies (e.g. [18,61,62]) have
failed to find a direct correlate between anhedonia mea-
sures such as those employed here and participants’ rat-
ings of how pleasant a sucrose solution is—a widely-used
animal model of anhedonia [63].
By contrast, in our paradigm, ρ falls squarely within the

behavioural definition of ‘wanting’ whereby past experi-
ences are collated into values that influence choice. One
possibility is thus that our results reflect the way that
‘liking’ is coupled into ‘wanting’, with the reward having
less impact when it occurred (ρ was lower), rather than
the same amount of pleasure not being translated effi-
ciently into anticipation (which would be the consequence
of lowered ε). Such a reduction in reward sensitivity par-
allels reductions in emotional reactions seen in MDD in
response to appetitive, but also aversive, stimuli [64].
At a neurobiological level, ‘liking’, has been linked to

μ-opioid signalling [40,65-67] in NAcc shell. Recent PET
studies have reported prefrontal changes in μ-opioid
receptors in MDD [68], and μ-opioid receptors have been
found to affect the response to antidepressantmedications
[69]. We also note that substance abuse disorders, includ-
ing of opiates, are prominently co-morbid with depressive
disorders [70,71], although it is not clear whether abuse
causes depression or vice versa. It would be interesting to
examine the effect of opiates on tasks like those examined
here. If the primary reward sensitivity relates to “liking”
and consummatory pleasure, then one would expect a
preferential impact on ρ, unlike dopamine.

Dopamine in depression
The temporal difference learning model of phasic
dopamine signalling posits that DA reports the prediction
error δ. As mentioned in the introduction, a multiplicative
change in this signal would be equivalent to a change in
the learning rate ε. Although an alteration in the reward
sensitivity ρ necessarily also leads to an alteration in the
prediction error δ, the consequences of an abnormality
that arises upstream of the prediction error are subtly
different from an abnormality affecting the already com-
puted prediction error signal. It is the latter that is most
closely aligned with a primary alteration in dopaminergic
function.
In the current study, we report tentative findings sug-

gesting that pramipexole reduced the learning rate rather
than affecting the reward sensitivity, which might cor-
respond to a direct reduction in the signal reported
by phasic DA. Although pramipexole is a non-ergot
D2/D3 agonist (and is clinically used as such in Parkin-
son’s disease, restless leg syndrome, and occasionally in
treatment-resistant MDD), it has previously been found
to have behavioural effects of a DA antagonist at the low
doses (0.5 mg) used in our dataset [72-74]. Similarly, low
doses of the D2 agonist cabergoline have been found to

specifically reduce reward go learning [75]. With both
drugs, it has been postulated that this may be due to acti-
vation of inhibitory [76] presynaptic D2 receptors, which
have a higher affinity for DA [77] and reduce phasic DA
release ([78-82]; see also [56]) and DA cell firing [83].
Thus, our findings echo those of a recent study showing
that dopamine agonists can reinstate prediction errors by
restoring the component of the prediction error related
to expected value, rather than that of reward [84]. How-
ever, we emphasize that the conclusions pertaining to
dopamine rest on the contribution of only one study and
that there are important technical caveats to be borne in
mind (see below).
As indicated in the introduction, DA has multiple

and profound involvements with depression. These range
from the fact that DAmanipulations affect mood [85] and
that many antidepressants have pro-DA effects (includ-
ing buproprion, sertraline, nomifensine, tranylcypromine
amongst others; [86]), to a role in resilience [87,88], and
suicidality in MDD [89,90]. Critically, depression is com-
mon in other disorders that also involve DA dysfunction,
such as Parkinson’s disease and schizophrenia [91,92].
However, the findings reported here speak to the specific
aspects of phasic DA in learning, rather than to all the
manifold ways in which DA may be involved in anhedo-
nia and depression. Tonic DA levels, which are partially
independent of phasic bursts of activity [93,94] have a
profound impact on energy levels and vigour [95,96] mak-
ing this feature of DA a likely candidate for the severe
psychomotor retardation seen in melancholic depression
[32], and to the distinction between pleasure and moti-
vational aspects of anhedonia [18,97]. In the context of
our task, this may relate to reaction times (albeit noting
that these can also be affected by phasic DA signals; [98]),
which were not analysed. Rather, here, we focused on
the role of DA in instrumental learning of action values.
Note, though, that the current design cannot completely
disentangle instrumental effects from those due to Pavlo-
vian approach [58,99]. Such Pavlovian influences involve
dopamine and the nucleus accumbens (NAcc; [100-105]),
and may indeed constitute one of the ways in which DA
supports antidepressant function [106,107].
Overall, our findings are consistent with the fact that

DA by itself is not a major target for psychopharmacolog-
ical treatment of anhedonia [92], and, modulo the issues
mentioned above, that DA appears to mediate ‘wanting’,
more than ‘liking’ [40,108]. There has been a number
of recent functional imaging investigations into reward-
related decision making in MDD (e.g. [11,109-114]). Our
findings have key implications for the interpretations of
these studies, as it is important to separate contribu-
tions to the correlates of prediction errors that arise
from changes in reward sensitivity from changes in learn-
ing rate. Because a) ‘wanting’ (reinforcement) and ‘liking’
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(hedonic) aspects of tasks will often overlap; and b) both
changes in ρ and ε would affect correlations with a regres-
sor based on prediction errors δ, our findings do not
invalidate these imaging results, but call for studies and
analyses that further separate them.

Analysis methods
Our conclusions were derived from a detailed, model-
based meta-analysis combining behavioural data from six
datasets in 392 sessions. Several features and limitations
of this analysis deserve comment.
First, the interpretability of the parameters is maximised

by using rigorous model comparisons. The Bayesian
approach we used prevents overfitting by integrating out
individual subject parameters [43,45,46,58]. Rather than
just comparing how careful parameter tuning can allow a
model to fit the data extremely well, we extensively sam-
pled the model’s entire parameter space, and ask how well,
on average, the class of model, independent of its partic-
ular parameters, can fit the given data (for an insightful
explanation, see chapter 28 of [59]). Next, our model
comparison is done at the group level, rather than at
the individual level, again through sampling and Bayesian
model comparison. This ensures that conclusions about
the parameters do apply to the group.
Second, our approach takes individual model fits into

account. The regression analyses are true random effects
analyses, weighting parameters by how strongly they are
constrained by each participant’s own choice data, and
by how well the model fits that particular participant.
This, in combination with the explicit modelling of stim-
ulus uncertainty (beliefs) and instruction weights, ensures
that any non-specific performance variability does not
unduly affect our parameters of interest. Furthermore, the
weighted regression ensures that each participant influ-
ences the conclusions proportionally to how well they are
fit by the model.
Third, it is standard practice to constrain the parameters

when fitting models, for instance to avoid extreme outlier
inference. We use two types of constraints. The param-
eter transformations generate hard constraints that force
parameters to remain inside feasible regions. The empir-
ical Bayesian inference of the group priors additionally
yields the most appropriate soft constraints [59,115].
Fourth, learning rate and reward sensitivity were corre-

lated in all models tested. To alleviate this, we enforced
independence at the group level. One standard approach
would have been to compare models in which one dimen-
sion is constrained by forcing the parameters for all par-
ticipants along that dimension to be equal. However, this
a) is an unrealistic constraint; b) fails to address the fact
that parameters may not give the model equal flexibility;
and c) renders parameters hard to interpret as variabil-
ity from one is squeezed into all the other parameters

(which further aggravates point b). To circumvent these
issues, we contrasted the parsimony of models that explic-
itly allowed participants to fall into distinct groups. Doing
this at the group level addressed the questions at the group
level, which is where we sought to draw conclusions. We
also performed the regression analysis in a number of
ways to assess the selectivity of the relationship with ρ and
its stability in the inference procedure.
Fifth, it is important to note that our failure to discover

correlations between AD and learning rate, or between
the effects of pramipexol and reward sensitivity might be
due to limits of power. This is particularly true for the cat-
egorical comparisons on which arguments about the dif-
ferential effect of dopamine and anhedonia or depression
rest mainly. It will be critical to replicate these findings in
larger samples, potentially requiring paradigms explicitly
adapted to separating the two factors.
Sixth, we find no evidence that either learning rate of

reward sensitivity clearly separates any of the groups when
comparing the basic model to models Mρ or Mε that
allow for the two groups to have different means in one
of the other parameter. However, our central motivation
was whether anhedonia associated more with unusual ρ

or unusual ε, because of the different psychiatric and psy-
chological interpretations of these possibilities. The most
direct test of this is to compare Mρ to Mε rather than
comparing each to a mid-point in the shape of the basic
model. Furthermore, there are a number of caveats to
this finding, which form the basis for reporting the more
lenient comparison between models Mρ and Mε . First,
the model comparison technique may be too conserva-
tive for this particular analysis. For instance, at the top
level we very stringently punish according to the total
number of observations. Although we have found this
to overestimate the rate at which the group-level vari-
ance should drop with observations, in our hands this
penalty has proven to yield the correct responses most
reliably when tested on a variety of surrogate datasets
(unpublished data in preparation). This is likely to be par-
ticularly important given that the power in the analyses
in Figure 4 is much lower than that in the preceding
analyses using the entire dataset. These considerations
do not bear on comparisons between models Mρ and
Mε . Furthermore, the panels showing the parameters in
Figure 4 appear to show robust group differences. How-
ever, a separation in parameter space does not guarantee
that the increase in fit outweighs the increase in model
complexity.
Of course, even though our best fitting model did an

excellent job predicting the data of a plurality of partic-
ipants, there could be a model that we did not try that
would do even better. This is particularly true of the par-
ticipants in the Stress dataset, who were fit the worst.
There is a conventional ANOVA-like procedure in these
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circumstances that involves assessing the extent to which
responses are potentially predictable [44,116] from run-
ning the same task multiple times. Unfortunately, it is not
clear how to execute this in cases involving learning which
is contingent on the participants’ behaviour.

Alternative models
One advantage of the simplicity of the task is that it
is likely insensitive to several aspects of reinforcement
learning that are under current investigation, such as
goal-directed versus habitual decision-making [117,118].
However, one interesting direction would be to consider a
more Bayesian treatment of the learning process, accord-
ing to which the effective learning rate ε should be a
function of the amount of experience that the participant
has had, modulated by the participant’s belief that the
contingencies are constant [119-121].
This elaborate account raises an important question

about the factor ε in the models that we did build. Here,
we considered the effect on learning of manipulating
the magnitude of δt ; but noted that this is exactly con-
founded in the magnitude of ε. Neurobiologically, though,
there could be an alternative realization of ε, notably via
cholinergic influences [122-124]. It would be interesting
to examine the effect of cholinergic manipulations on the
basic task.
Equally, in conventional reinforcement learning mod-

els, it is common to employ a variant of Equation 2 in
which the terms W are multiplied by another arbitrary
constant which is usually written β and called an inverse
temperature. The larger β , the more deterministic the
choice between at and āt , all else being equal. Thus β is
often used as a surrogate for controlling exploration, as
more stochastic choices (lower β) are more exploratory.
However, in our model, β can substitute exactly for ρ

(in a very similar way that ε can substitute for the mag-
nitude of δ). Thus reward insensitivity could masquer-
ade as over-exploration or (particularly in depression) as
under-exploitation. These are not differentiable in this
task. Nevertheless, the neurobiological realization of the
exploration constant β has been suggested as being rather
different – notably involving noradrenergic neuromodu-
lation [125] – opening up another line of experimental
investigation.
Finally, two relevant findings may be important

for future model development. First, positive affective
responses to positive events in daily life have recently been
found to be stronger in depressed than in non-depressed
individuals [126]. Second, the impact of negative events
has been found to be determined not by the strength of
the immediate emotional reaction, but by the attributions
made about it [127]. Thus, it may be that the effects seen
here can be modified by higher-order processes in ways

that are critical for the development of psychopathology,
and it may be useful to extend the presentmethods to such
interactions [60].

Conclusions
This paper presented a model-based meta-analysis of
behavioural data spanning several related manipulations
and adds to a growing literature of behavioural corre-
lates of depression [64,128]. We concluded that anhe-
donia in depressive states was mediated by a change in
reward sensitivity, which has different behavioural con-
sequences from either stress or DA manipulations. Our
analysis allowed us to draw these conclusions while tak-
ing into account as much as possible the variability
between the datasets and participants; and the variabil-
ity in other, unrelated aspects of task performance. We
believe that similar analyses could be readily applied to
other datasets. We hope that our findings will encourage
the re-analysis of the dissociation between reward sensi-
tivity and dopaminergic processes in depressive states.

Additional file

Additional file 1: Supplementary methods and results [43,63-65].
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