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Abstract

Background: The amygdala and medial prefrontal cortex (mPFC) comprise a key corticolimbic circuit that helps
shape individual differences in sensitivity to threat and the related risk for psychopathology. Although serotonin (5-
HT) is known to be a key modulator of this circuit, the specific receptors mediating this modulation are unclear.
The colocalization of 5-HT1A and 5-HT2A receptors on mPFC glutamatergic neurons suggests that their functional
interactions may mediate 5-HT effects on this circuit through top-down regulation of amygdala reactivity. Using a
multimodal neuroimaging strategy in 39 healthy volunteers, we determined whether threat-related amygdala
reactivity, assessed with blood oxygen level-dependent functional magnetic resonance imaging, was significantly
predicted by the interaction between mPFC 5-HT1A and 5-HT2A receptor levels, assessed by positron emission
tomography.

Results: 5-HT1A binding in the mPFC significantly moderated an inverse correlation between mPFC 5-HT2A binding
and threat-related amygdala reactivity. Specifically, mPFC 5-HT2A binding was significantly inversely correlated with
amygdala reactivity only when mPFC 5-HT1A binding was relatively low.

Conclusions: Our findings provide evidence that 5-HT1A and 5-HT2A receptors interact to shape serotonergic
modulation of a functional circuit between the amygdala and mPFC. The effect of the interaction between mPFC
5-HT1A and 5-HT2A binding and amygdala reactivity is consistent with the colocalization of these receptors on
glutamatergic neurons in the mPFC.

Background
Research in human and non-human animal models
implicates a corticolimbic circuitry composed of struc-
tural and functional connections between the amygdala
and regions of the medial prefrontal cortex (mPFC)
including the anterior cingulate cortex (ACC) in gener-
ating and regulating behavioral and physiological
responses to threat-related stimuli [1-4]. Regions of the
mPFC are crucially involved in the integration and sub-
sequent regulation of stimulus-driven amygdala
response, partly via glutamatergic projections to popula-
tions of GABAergic neurons within the amygdala [5-7].
Variability in the structure and function of this

corticolimbic circuitry has been associated with interin-
dividual differences in personality measures, reflecting
sensitivity to environmental threat and related risk for
psychopathology [2,8-11].
Serotonin (5-hydroxytryptamine, 5-HT) exerts potent

modulatory effects on mood, affect, and responsiveness
to stress and threat [12]. Neuroimaging studies in
humans have mapped interindividual differences in
amygdala reactivity to biologically salient environmental
stimuli (for example, facial expressions of threat) onto
variability in 5-HT signaling within this corticolimbic
circuitry [2,13-21]. However, the role of specific 5-HT-
receptor signaling pathways in mediating these effects
are not fully understood [12]. Previous work in humans
using positron emission tomography (PET) has impli-
cated 5-HT1A and 5-HT2A receptors in modulating
mood, affect and threat responsiveness, and in the
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corticolimbic circuitry supporting these behaviors
[22-26]. Importantly, the anatomical localization of these
two receptors within prefrontal cortex positions them to
mediate effectively the observed effects of 5-HT signal-
ing on corticolimbic circuit dynamics.
In the mPFC, the excitatory 5-HT2A and inhibitory 5-

HT1A receptors are colocalized on glutamatergic pyra-
midal neurons [27]. The 5-HT2A receptor is specifically
localized to proximal portions of apical dendrites
[28,29], where convergent inputs are integrated, and is
therefore positioned to facilitate mPFC function through
second-messenger signaling cascades, resulting in mem-
brane depolarization [27,30]. By contrast, the 5-HT1A

receptor is localized to the initial segment of the axon,
where action potentials are typically generated
[27-29,31-34], thus this receptor is positioned to exert
an inhibitory effect on mPFC function through ‘gating’
glutamatergic output via membrane hyperpolarization.
Collectively, these two receptors are crucially positioned
to mediate effects of 5-HT on glutamatergic neuronal
activity and mPFC function, including top-down regula-
tion of amygdala reactivity [27,35].
In one previous study, we identified an inverse corre-

lation between mPFC 5-HT2A binding and threat-related
amygdala reactivity [14]. In another, we reported that 5-
H1A autoreceptor binding in the dorsal raphe nucleus
was inversely correlated with amygdala reactivity [15].
However, the effects of mPFC 5-HT1A binding on
threat-related amygdala reactivity were not explored in
either of these studies. More importantly, whether
mPFC 5-HT1A binding moderates the previously
observed inverse association between mPFC 5-HT2A

binding and threat-related amygdala reactivity, as sug-
gested by the aforementioned colocalization of these
receptors within the mPFC, has not yet been
determined.
In the current study we explored this hypothetical

functional interaction using multimodal PET/functional
magnetic resonance imaging (fMRI) neuroimaging data
in a sample of 39 healthy adult volunteers that partially
overlaps with those of our two previous reports [14,15].
We hypothesized that mPFC 5-HT1A binding would be
positively correlated with threat-related amygdala reactiv-
ity, reflecting the inhibitory effects of the 5-HT1A recep-
tor on prefrontal pyramidal neurons, which are
positioned to exert an inhibitory effect on the amygdala.
Consistent with our previous report, we further hypothe-
sized that mPFC 5-HT2A binding would be inversely cor-
related with amygdala reactivity. Finally, in light of the
molecular interactions predicted from the colocalization
of 5-HT1A and 5-HT2A receptors, we hypothesized that
mPFC 5-HT1A binding would significantly interact with
mPFC 5-HT2A binding, so that 5-HT2A binding would

be inversely correlated with amygdala reactivity only at
relatively low levels of 5-HT1A binding.

Results
Amygdala reactivity
Consistent with previous reports, we observed robust
threat-related reactivity in the bilateral amygdala across
all participants [36,37] (Figure 1). The magnitude of
right amygdala reactivity, but not left amygdala reactiv-
ity, was inversely correlated with age (right amygdala: r2

= 0.19, P = 0.005; left amygdala: r2 = 0.02, P = 0.35).
Neither right nor left amygdala reactivity was correlated
with gender (r2 values < 0.03, P values > 0.3).

Serotonin receptor binding
We focused on quantifying 5-HT1A and 5-HT2A binding
within the pregenual and subgenual prefrontal cortex
(pgPFC and sgPFC, respectively) because of previous
reports supporting an integral structural and functional
relationship between the amygdala and these mPFC
regions in the context of processing threat that is modu-
lated by 5-HT signaling [1,2,6,14,38,39].
Reflecting 5-HT1A binding, we observed specific [11C]

WAY100635 binding within both pgPFC (mean ± SD
binding potential, non-displaceable (BPND) = 4.32 ±
1.18) and sgPFC (BPND = 4.86 ± 1.41) for all subjects.
Reflecting 5-HT2A binding, we observed specific [18F]
altanserin binding within both pgPFC (BPND = 1.06 ±
0.37) and sgPFC (BPND = 1.19 ± 0.46). 5-HT1A and 5-
HT2A binding between the pgPFC and sgPFC were sig-
nificantly correlated (5-HT1A BPND: r

2 = 0.69, P = 5.87

Figure 1 Amygdala reactivity to perceptual processing of fearful
and angry facial expressions. Statistical parametric map representing
bilateral amygdala clusters exhibiting a significant response to task
(faces > shapes; right amygdala: (24, -6, -11), z = 6.28, k = 145 voxels
(P < 0.05, corrected); left amygdala: (-18, -7, -15), z = 5.77, k = 146
voxels (P < 0.05, corrected). Color bar indicates t-scores.
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× 10-11; 5-HT2A BPND: r
2 = 0.63, P = 1.80 × 10-9). How-

ever, within regions, 5-HT1A binding was not signifi-
cantly correlated with 5-HT2A binding (pgPFC: r2 = 3.28
× 10-5, P = 0.97; sgPFC: r2 = 0.001, P = 0.88). 5-HT2A

binding was significantly inversely correlated with age
(pgPFC: r2 = 0.41, P = 1.30 × 10-5; sgPFC: r2 = 0.41, P =
1.29 × 10-5), but 5-HT1A binding did not have a signifi-
cant correlation with age (pgPFC: r2 = 0.01, P = 0.53,
sgPFC: r2 = 0.003, P = 0.73). Neither 5-HT1A nor 5-
HT2A binding was significantly correlated with gender
(r2 values < 0.01, P values > 0.5).

5-HT1A binding and amygdala reactivity
Regional 5-HT1A binding was not significantly corre-
lated with amygdala reactivity in either pgPFC nor
sgPFC (right amygdala versus pgPFC 5-HT1A BPND: t36
= -0.76, P = 0.94; right amygdala versus sgPFC 5-HT1A

BPND: t36 = 0.54, P = 0.60; left amygdala versus pgPFC
5-HT1A BPND: t36 = 0.16, P = 0.88; left amygdala ver-
sus sgPFC 5-HT1A BPND: t36 = -0.09, P = 0.93) (Figure
2A,B).

5-HT2A binding and amygdala reactivity
Regional 5-HT2A binding was significantly inversely cor-
related with amygdala reactivity [14]. Specifically, right
amygdala reactivity was inversely correlated with 5-

HT2A binding within both pgPFC (t36 = -3.44, P =
0.002; Figure 2D) and sgPFC (t36 = -2.49, P = 0.02).
There was no significant correlation between left amyg-
dala reactivity and 5-HT2A binding within either pgPFC
(t36 = -0.61, P = 0.55; Figure 2C) or sgPFC (t36 = 0.72, P
= 0.47). Thus, we focused our analyses on the effects of
interaction between 5-HT1A and 5-HT2A binding on
right amygdala reactivity.

Interaction between 5-HT1A and 5-HT2A binding and
amygdala reactivity
Consistent with our hypothesis, there was a significant
interaction between 5-HT1A and 5-HT2A binding in
both the pgPFC (t34 = 2.18, P = 0.03) and sgPFC (t34 =
2.72, P = 0.01) in predicting threat-related right amyg-
dala reactivity (Figure 3). Further examination of this
interaction effect showed that 5-HT2A binding was sig-
nificantly inversely correlated with right amygdala reac-
tivity when 5-HT1A binding was < 4.99 (0.6 SDs above
the mean) in the pgPFC or < 5.48 (0.4 SDs above the
mean) in the sgPFC. It should be noted that the inverse
correlations between 5-HT2A binding and right amyg-
dala reactivity remained significant when 5-HT1A bind-
ing, the interaction term and age were included in the
models (pgPFC: t34 = -3.55, P = 0.001; sgPFC: t34 =
-2.72, P = 0.006).

Figure 2 Association between amygdala reactivity and 5-HT1A BPND and 5-HT2A BPND. (A,B) Plot of non-significant correlation between left
and right amygdala reactivity and pgPFC 5-HT1A BPND. (C) Plot of non-significant correlation between left amygdala reactivity and pgPFC 5-HT2A
BPND. (D) Plot of significant inverse correlation between right amygdala reactivity and pgPFC 5-HT2A BPND. 5-HT = serotonin; BPND = binding
potential, non-displaceable; pgPFC = pregenual prefrontal cortex; sgPFC = subgenual prefrontal cortex.
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Discussion
Results from our current analyses indicate that the
interaction between 5-HT1A and 5-HT2A receptors in
the mPFC is crucial for shaping the response of the
human amygdala to threat. Specifically, 5-HT2A binding
was inversely correlated with threat-related amygdala
reactivity, but only when 5-HT1A binding was at mean
or relatively low levels. Importantly, these patterns were
independent of age and gender, suggesting the general

importance and widespread effects that the interaction
between mPFC 5-HT1A and 5-HT2A receptors may have
on amygdala reactivity. The right lateralized nature of
this interaction effect may reflect relatively greater invol-
vement of the right amygdala in the perceptual proces-
sing of facial stimuli and, subsequently, greater 5-HT
modulation of reactivity in this hemisphere. Although a
number of studies have reported asymmetries in monoa-
minergic modulation of cortical and subcortical circuits

Figure 3 5-HT1A BPND significantly moderated the correlation between 5-HT2A BPND and right amygdala reactivity. (A) pgPFC 5-HT1A
BPND moderated the correlation between pgPFC 5-HT2A BPND and right amygdala reactivity. Lines indicate simple slope between pgPFC 5-HT2A
BPND and right amygdala reactivity at three arbitrarily chosen pgPFC 5-HT1A BPND values: low (1 SD below mean (-1 SD), solid black line), mean
(equivalent to mean, red dotted line) and high (1 SD above mean (+1 SD), green dotted line). (B) sgPFC 5-HT1A BPND significantly moderated
the association between sgPFC 5-HT2A BPND and right amygdala reactivity. Lines indicate simple slope between sgPFC 5-HT2A BPND and right
amygdala reactivity at three arbitrarily chosen sgPFC 5-HT1A BPND values: low (-1 SD, solid black line), mean (red dotted line) and high (+1 SD,
green dotted line). *Indicates simple slope, P < 0.05; 5-HT = serotonin; a.u. = arbitrary units; BPND = binding potential, non-displaceable; pgPFC =
pregenual prefrontal cortex; sgPFC = subgenual prefrontal cortex.

Fisher et al. Biology of Mood & Anxiety Disorders 2011, 1:2
http://www.biolmoodanxietydisord.com/content/1/1/2

Page 4 of 11



[40-43], the biological mechanisms mediating such later-
alized effects are difficult to ascertain on the basis of the
existing literature.
We explicitly tested for an interaction effect (that is,

moderation) between 5-HT1A and 5-HT2A binding
because we believe that this represents the most
straightforward approach for interpreting how these two
systems potentially interact to modulate threat-related
amygdala reactivity. Although conceptually and intui-
tively appealing, we did not employ a metric reflecting
the ratio of 5-HT1A and 5-HT2A binding for two rea-
sons: 1) its association with amygdala reactivity would
be arbitrarily dependent upon how the ratio term is
constructed and 2) testing for the effect of a ratio term
(that is, X1 multiplied by the inverse of X2) is essentially
a test for an interaction effect in which one of the vari-
ables is transformed, which we believe would render
interpretation difficult at best. Consequently, we believe
our test for an interaction between 5-HT1A and 5-HT2A

binding represents the most appropriate and parsimo-
nious statistical test.
These findings are remarkably consistent with the pre-

dominant anatomical localization of 5-HT1A and 5-
HT2A receptors to the axon hillock and apical dendrites
of prefrontal glutamatergic pyramidal neurons, respec-
tively. Given its principal localization on apical dendrites
proximal to the soma, the excitatory 5-HT2A receptor is
situated to mediate 5-HT depolarization of prefrontal
glutamatergic neurons. By contrast, the localization of

the inhibitory 5-HT1A receptor to the initial portion of
the axon hillock positions it to mediate 5-HT hyperpo-
larization of these same neurons. Considering the high
coexpression of 5-HT1A and 5-HT2A receptors on most
prefrontal glutamatergic neurons, this arrangement sug-
gests that the 5-HT1A receptor can effectively (and nega-
tively) gate the depolarizing effects of the 5-HT2A

receptors on prefrontal output. In turn, such serotoner-
gic modulation of prefrontal neuron output may shape
the capacity of this circuitry to exert an inhibitory effect
on amygdala reactivity (Figure 4). We interpret our cur-
rent findings of an inverse correlation of mPFC 5-HT2A

binding with amygdala reactivity but only at mean and
low levels of 5-HT1A binding as reflecting the coexpres-
sion of these receptors and their role in mediating sero-
tonergic modulation of this circuitry. The absence of a
main effect of mPFC 5-HT1A binding on amygdala reac-
tivity is further consistent with this gating model, with
the capacity for mPFC 5-HT1A receptors to modulate
threat-related amygdala reactivity being dependent upon
additional signaling mechanisms such as, but not neces-
sarily limited to, mPFC 5-HT2A receptors. Although
interpretation of our findings is consistent with the pre-
viously described localization of the 5-HT1A and 5-
HT2A receptors within prefrontal cortex, our results
reflect only statistical correlation, and do not establish
causality. Future studies aimed at establishing a causal
link between 5-HT1A and 5-HT2A receptor interactions
on prefrontal pyramidal neuron excitability and the

Figure 4 Schematic illustrating mPFC projection neurons that act to regulate amygdala response to threat-related stimuli. 5-HT1A and
5-HT2A in mPFC are positioned to modulate this circuitry by biasing excitability of these mPFC neurons, thereby affecting the capacity to
regulate amygdala reactivity. 5-HT = serotonin; mPFC = medial prefrontal cortex; CeL = lateral central nucleus of the amygdala; CeM = medial
central nucleus of the amygdala; ITC = intercalated cells.
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response of the amygdala in the context of threat are
necessary.
There is strong evidence suggesting that 5-HT signal-

ing within the amygdala plays an important role in mod-
ulating threat-related amygdala reactivity [13,20,44], and
both 5-HT1A and 5-HT2A receptors are expressed in the
amygdala [45-47]. However, we did not observe a signif-
icant correlation between either 5-HT1A or 5-HT2A

binding in the amygdala and amygdala reactivity (data
not shown). Unlike in the mPFC, 5-HT1A and 5-HT2A

receptors may be more evenly distributed on both gluta-
matergic and GABAergic neurons within the amygdala
[47,48]. This potential for both receptor subtypes to
cause inhibitory and excitatory modulation of the amyg-
dala complicate efforts to map correlations between esti-
mates of local binding and reactivity in the absence of
cell-type specific values, which are beyond the scope of
current PET techniques. Finally, additional 5-HT recep-
tor signaling mechanisms within the amygdala, such as
the 5-HT3 and 5-HT2C receptors, have been implicated
in anxiety-related behavioral phenotypes in animal mod-
els, and may have a greater role in mediating the effects
of local 5-HT signaling on amygdala function [44,49-51].
There are important limitations to our study. Our

blood oxygen level-dependent (BOLD) fMRI challenge
paradigm was explicitly designed to elicit threat-related
amygdala reactivity associated with driving behavioral
and physiologic arousal in response to environmental
stimulation. Our task did not engage any mPFC region
involved in regulating amygdala reactivity and overlap-
ping with our PET region of interest (ROI). Thus, we
were not able to explore the effects of mPFC 5-HT1A

and 5-HT2A binding on mPFC function related to the
top-down regulation of amygdala reactivity. Alternative
paradigms such as those involving emotion regulation
or extinction of conditioned fear responses may help to
determine effects of 5-HT1A and 5-HT2A signaling on
related mPFC and amygdala reactivity.
BOLD fMRI and PET receptor imaging provide only

indirect metrics of amygdala excitation and 5-HT recep-
tor signaling, respectively. The small sample size in our
study limited our power to model interaction effects,
thus our findings must be interpreted with caution. The
interpretation that our findings reflect the interactive
effects of 5-HT1A and 5-HT2A receptors on glutamater-
gic neurons is based on evidence that 1) each of these
receptors is predominantly localized to glutamatergic
neurons [28,32], 2) colocalization of 5-HT1A and 5-
HT2A receptors within the mPFC is predominantly
observed on glutamatergic neurons [27], and 3) projec-
tions from the mPFC to the amygdala are composed of
glutamatergic neurons [52,53]. Despite this, the PET
technique does not allow identification of binding asso-
ciated only with neurons that directly innervate the

amygdala, thus we could not confirm the causality of
this association using methods currently available.
Future studies examining these associations in the con-
text of pharmacological challenge (that is, receptor-spe-
cific antagonism) could provide more direct evidence
implicating the interaction between mPFC 5-HT1A and
5-HT2A receptors in mediating the effects of 5-HT sig-
naling on threat-related amygdala reactivity.

Conclusions
Our current findings provide unique in vivo evidence
that 5-HT receptors in the mPFC play an important
role in shaping interindividual variability in threat-
related amygdala reactivity. Specifically, the data reveal
that mPFC 5-HT1A receptors effectively gate the capa-
city for mPFC 5-HT2A receptors to drive prefrontal pyr-
amidal neuron excitability related to the regulation of
threat-related amygdala reactivity. The current work
further highlights the effectiveness of multimodal neu-
roimaging in identifying molecular signaling pathways
that modulate neurobiological circuits in humans, and
specifically implicates the interaction between mPFC 5-
HT1A and 5-HT2A receptors in modulating the response
of the human amygdala and possibly mediating the
effects of altered 5-HT signaling on mood, affect and
related psychopathology.

Methods
The study was approved by the institutional review
board of the University of Pittsburgh, and written
informed consent was obtained from all participants.

Participants
In total, 39 healthy adult volunteers participated in the
study (20 men, 19 women, mean ± SD age 39.1 ± 12.7
years). Subjects were recruited through local advertise-
ments, referrals and ongoing studies. Subjects were gen-
erally healthy. Exclusion criteria included 1) current or
lifetime mood, anxiety and psychotic disorder as
assessed by the Structured Clinical Interview of the
fourth edition of the Diagnostic and Statistical Manual
(DSM-I) [54], 2) family psychiatric history, 3) history of
substance abuse or use of antidepressants, 4) early
dementia or mild cognitive impairment according to the
Mini Mental State Examination [55], 5) reversed sleep-
wake cycle, 6) positive test of urine sample for drugs of
abuse assessed on the day of scanning. The association
between mPFC 5-HT2A binding and amygdala reactivity
has been described previously involving a subset of this
cohort (35 people) [14]. Most subjects completed the
fMRI and two PET scan sessions on the same day (n =
33). Those subjects who did not complete all three scan
sessions on the same day (n = 6) completed them within
1 month.

Fisher et al. Biology of Mood & Anxiety Disorders 2011, 1:2
http://www.biolmoodanxietydisord.com/content/1/1/2

Page 6 of 11



fMRI
Protocol
The experimental fMRI paradigm consisted of four
blocks of a face-processing task interleaved with five
blocks of a sensorimotor control task [14,15]. During
the face-processing task, subjects viewed a trio of faces
(expressing either anger or fear) and selected one of two
faces (bottom) identical to a target face (top). Angry and
fearful facial expressions can represent honest indicators
of ecologically valid threat, especially that related to
conspecific challengers [56]. Based on this, we inter-
preted the amygdala activation elicited by our task as
being threat-related. Subject performance (accuracy and
reaction time) was monitored during all scans.
Each sensorimotor control block consisted of six dif-

ferent shapes (circles and vertical and horizontal
ellipses) trios. Subjects viewed a shapes trio and selected
one of two shapes (bottom) identical to a target shape
(top). Each of the six shape trios was presented for 4
seconds with a fixed interstimulus interval (ISI) of 2 sec-
onds, giving a total block length of 36 seconds. Each
face-processing block consisted of six face trios,
balanced for gender and representing one target affect
(angry or fearful) derived from a standard set of pictures
of facial affect [57]. Each of the six face trios was pre-
sented for 4 seconds with a variable ISI of 2-6 seconds
(mean ISI = 4 seconds) for a total block length of 48
seconds. All blocks were preceded by a brief instruction
(’’Match faces’’ or ‘’Match shapes’’) lasting 2 seconds.
Total protocol time was 390 seconds.
As we were not interested in neural networks asso-

ciated with face-specific processing per se, but rather in
eliciting a maximal amygdala response across all sub-
jects, we chose not to use neutral faces as control sti-
muli because neutral faces can be subjectively
experienced as affectively laden or ambiguous, and thus
engage the amygdala [58,59].
Acquisition parameters
The acquisition parameters have been described pre-
viously [14,15,60]. Briefly, each subject was scanned
using a head-only scanner (GE Signa 1.5-T; GE Medical
Systems, Milwaukee, WI, USA). BOLD functional
images were acquired using a reverse spiral sequence
covering 28 slices, each 3.8 mm thick, encompassing the
entire cerebrum and most of the cerebellum (repetition
time (TR) = 2000 ms, echo time (TE) = 35 ms, field of
view (FOV) = 240 mm, matrix = 64 × 64, 195 whole-
brain volumes acquired). The first two functional
volumes acquired were discarded to allow the scanner
to reach equilibrium. Scanning parameters were selected
to optimize BOLD signal while maintaining enough
slices to acquire whole-brain data. Before the acquisition
of fMRI data for each subject, localizer scans were
acquired and visually inspected for artifacts such as

ghosting, and to ensure good signal across the entire
volume of acquisition. Before the acquisition of BOLD
data, an auto-shimming procedure was conducted in
each subject to minimize field inhomogeneities. The
fMRI data for all 39 subjects included in this study were
cleared of any related problems.
Data analysis
Whole-brain image analysis was completed using the
general linear model (GLM) of SPM8 http://www.fil.ion.
ucl.ac.uk/spm. Images for each subject were realigned to
the first volume in the time series to correct for head
motion, spatially normalized into a standard stereotactic
space (Montreal Neurological Institute template) using a
12-parameter affine model (final resolution of functional
images = 2 mm isotropic voxels), and smoothed to
minimize noise and residual difference in gyral anatomy
with a Gaussian filter, set at 6-mm full-width at half-
maximum. Voxel-wise signal intensities were ratio-nor-
malized to the whole-brain global mean. Preprocessed
data sets were analyzed using second-level random-
effects models that account for both scan-to-scan and
participant-to-participant variability to determine task-
specific regional responses.
Variability in single-subject whole-brain functional

volumes was determined using the software program
Artifact Recognition Toolbox http://www.nitrc.org/pro-
jects/artifact_detect. Individual whole-brain BOLD fMRI
volumes meeting at least one of the following two cri-
teria were excluded from determination of task-specific
effects: 1) significant mean volume signal intensity varia-
tion (that is, within-volume mean signal greater or less
4 SDs of mean signal of all volumes in time series); and
2) individual volumes with scan-to-scan movement
exceeding 2 mm translation or two degrees of rotation
in any direction. On average, 2.1 volumes per subject
were excluded because of significant variation in mean
volume signal intensity (range of volumes excluded per
subject = 0-17), and across all subjects, no volumes
were excluded because of excessive motion. Only 1% of
all volumes were excluded, thus we believe that this
approach enhanced our capacity to determine task-spe-
cific effects by excluding volumes with substantial varia-
bility without compromising our power to detect task-
specific effects by excluding a large number of volumes.
We believe this method effectively balances the use of
available functional neuroimaging data with a reasonable
approach towards accounting for effects due to artifacts
or movement.
After preprocessing, our GLM, employing canonical

hemodynamic response functions, was used to estimate
condition-specific and task-specific BOLD activation for
each individual (b weights and contrast images, respec-
tively). Individual contrast images (that is, the weighted
sum of the b images) were used in second-level random-

Fisher et al. Biology of Mood & Anxiety Disorders 2011, 1:2
http://www.biolmoodanxietydisord.com/content/1/1/2

Page 7 of 11

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.nitrc.org/projects/artifact_detect
http://www.nitrc.org/projects/artifact_detect


effects models to determine mean task-specific amygdala
reactivity using one-sample t-tests. Group-level effects
for our contrast of interest (that is, faces > shapes) were
assessed within the amygdala using an ROI constructed
from the WFU Pickatlas (version 1.04) [61,62].
To address the issue of multiple voxel-level compari-

sons, AlphaSim, a software program within AFNI http://
afni.nimh.nih/gov/afni that uses a Monte Carlo simula-
tion method, was used to determine that a voxel-wise
statistical threshold of P < 0.05, uncorrected, combined
with a cluster extent threshold of k > 56 voxels within
our amygdala search volume was sufficiently unlikely (a
< 0.05) to have occurred by chance [63]. This threshold
was used to assess our main effect of task within the
amygdala. Single-subject amygdala-reactivity values for
our contrast of interest were extracted from SPM8 using
Marsbar (version 0.42) [64]. A sphere of 5 mm radius
was centered on the voxel exhibiting the maximal
response to our task across all subjects within both the
right and left amygdala. Regional 5-HT receptor binding
and other variables were regressed against these
extracted BOLD values. Neuroimaging data are reported
using the coordinate system of Talairach and Tournoux.

General PET methods
Details concerning the MR and PET imaging procedures
related to both [11C]WAY100635 and [18F]altanserin are
described below, and have also been described pre-
viously [14,15,65-67] (see previous reports for discussion
about the limitations, challenges and methodological
attempts to minimize potential artifacts and biases
related to these radioligands [25,67-71]).
Structural MR images (GE Signa 1.5-T scanner) were

acquired for each subject using a spoiled-gradient
(SPGR) recalled sequence (TR = 25 ms, TE = 5 ms,
FOV = 240 mm, slice thickness = 1.5 mm, matrix = 256
× 192) with parameters optimized for contrast between
gray matter, white matter and cerebrospinal fluid (CSF).
Catheters were placed in an antecubital vein for radi-

oligand injection and in a radial artery for arterial blood
sampling. PET scans were acquired using a PET scanner
(ECAT HR+; CTI PET systems, Knoxville, TN) in 3D
imaging mode (63 transaxial planes, 2.4 mm thickness,
152 mm FOV). Head movement was minimized by use
of a thermoplastic mask immobilization system. A 10
minute transmission scan (rotating 68Ge/68Ga rods) was
acquired for attenuation correction of emission data.
PET data were further corrected for dead time and
scatter.
Each radioligand was administered as a slow bolus

over 20 seconds. PET data acquisition and arterial blood
sampling was initiated at the start of radioligand injec-
tion. The total radioactivity concentration in plasma was
determined from approximately 35 0.5-ml hand-drawn

blood samples collected over the scanning interval.
Additional blood samples were acquired at five to six
timepoints during the scan duration for determination
of the fraction of the total radioactivity resulting from
radiolabeled metabolites of the parent radioligand. Total
plasma radioactivity concentration was corrected for
radiolabeled metabolites and this ‘metabolite-corrected’
arterial input function was used for data analysis [69,71].
Image reconstruction was performed using filtered

back-projection for a final image resolution of about 6
mm. ROIs were drawn on resliced MR images for each
subject, and applied to their respective, co-registered
PET images (ROIs drawn by SZ and CB). Bilateral ROIs
were identified for the sgPFC, pgPFC, amygdala and cer-
ebellum (Figure 5). The cerebellum was used as the
reference region for non-displaceable radiotracer uptake
(that is, free and nonspecific concentrations, VND) for
both [11C]WAY 100635 and [18F]altanserin.
PET data for both radioligands were analyzed using

the Logan graphical method [72] to obtain regional
volume of distribution values (VT). Regional VT values
were used to determine the non-displaceable binding
potential, BPND, a measure of specific binding. The
BPND is directly proportional to Bavail/Kd, where Bavail is
the concentration of receptors available for radiotracer
binding (that is, not occupied by endogenous 5-HT),
and Kd is the equilibrium dissociation rate constant
(that is, inversely related to binding affinity). The PET
binding measures were corrected for partial volume
effects that arise from atrophy-related CSF dilution
using a previously validated two-component MR-based
atrophy correction algorithm [66,73,74].

Figure 5 Sagittal image of single-subject magnetic resonance
image with pgPFC (top) and sgPFC (bottom) ROIs outlined.
Despite its appearance, pgPFC and sgPFC ROIs are drawn on
consecutive transaxial slices. pgPFC = pregenual prefrontal cortex;
ROIs = regions of interest; sgPFC = subgenual prefrontal cortex.

Fisher et al. Biology of Mood & Anxiety Disorders 2011, 1:2
http://www.biolmoodanxietydisord.com/content/1/1/2

Page 8 of 11

http://afni.nimh.nih/gov/afni
http://afni.nimh.nih/gov/afni


[18F]Altanserin specific methods
The radiosynthesis of [18F]altanserin was performed
using a modification of the original method [75] that
has been used in several studies in our laboratory
[14,67,76-78]. [18F]Altanserin was administered via intra-
venous injection (7.23 ± 0.31 mCi), and PET scanning
was performed over 90 minutes. The Logan analysis
regression was performed over the 12-90 minute post-
injection integration intervals (10 points) to obtain
regional [18F]altanserin VT and BPND values.

[11C]WAY100635 specific methods
The radiosynthesis of [11C]WAY 100635 was performed
as previously described [79], and has been used in sev-
eral previous studies in our laboratory [15,65,71]. [11C]
WAY100635 was administered via intravenous injection
(14.01 ± 2.10 mCi), and PET scanning was performed
over 90 minutes. The Logan analysis regressions were
performed over the 14-90 minute post-injection integra-
tion interval (13 points) to obtain regional [11C]
WAY100635 VT and BPND values.

Regression analyses
The association between threat-related amygdala reactiv-
ity and 5-HT1A and 5-HT2A binding was determined
using a linear regression analysis between extracted sin-
gle-subject amygdala BOLD values and ROI-specific 5-
HT1A or 5-HT2A binding values in SPSS (version 17.0;
SPSS Inc., Chicago, IL, USA). We previously reported
within a subset of this cohort that both amygdala reac-
tivity and mPFC 5-HT2A binding are inversely correlated
with age [14], and this is consistent with other previous
studies [76,78,80]. To account for age-related variability
in these two measures, age was included as a covariate
in all analyses. Consequently, plots indicate the amyg-
dala reactivity values standardized for age effects. These
values are the standardized residuals of amygdala reac-
tivity after accounting for effects of age. This procedure
was adopted to illustrate more clearly the relationship
between regional 5-HT receptor binding and amygdala
reactivity, independent of age. The statistics reported
reflect the regression analysis results between observed
BOLD and binding values including age as a covariate.
As gender was not significantly correlated with our neu-
roimaging data, it was not included in any analyses
determining the relationship between prefrontal 5-HT1A

or 5-HT2A binding and amygdala reactivity.
The association of the interaction between mPFC 5-

HT1A, 5-HT2A binding and threat-related amygdala
reactivity was determined using SPSS software and a lin-
ear regression model including 5-HT1A binding, 5-HT2A

binding, age and the interaction term as covariates.
Additional statistics related to the interaction effects
were calculated using a previously validated approach

http://www.people.ku.edu/~preacher/interact/mlr2.htm
that incorporates parameters estimated from our statisti-
cal model (for example, regression coefficients, coeffi-
cient covariances) [81]. These additional statistics
included simple slopes at specified 5-HT1A binding
values, significance of simple slopes, and range of
5-HT1A binding values over which association between
5-HT2A binding and amygdala reactivity was significant.
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