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Resting state amygdala-prefrontal connectivity
predicts symptom change after cognitive
behavioral therapy in generalized social anxiety
disorder
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Abstract

Background: Aberrant amygdala-prefrontal interactions at rest and during emotion processing are implicated in
the pathophysiology of generalized social anxiety disorder (gSAD), a common disorder characterized by fears of
potential scrutiny. Cognitive behavioral therapy (CBT) is first-line psychotherapy for gSAD and other anxiety
disorders. While CBT is generally effective, there is a great deal of heterogeneity in treatment response. To date,
predictors of success in CBT for gSAD include reduced amygdala reactivity and increased activity in prefrontal
regulatory regions (e.g., anterior cingulate cortex, ACC ) during emotion processing. However, studies have not
examined whether tonic (i.e, at rest) coupling of amygdala and these prefrontal regions also predict response
to CBT.

Results: Twenty-one patients with gSAD participated in resting-state functional magnetic resonance imaging (fMRI)
before 12 weeks of CBT. Overall, symptom severity was significantly reduced after completing CBT; however, the patients
varied considerably in degree of symptom change. Whole-brain voxel-wise findings showed symptom improvement after
CBT was predicted by greater right amygdala-pregenual ACC ( pgACC ) connectivity and greater left amygdala-pgACC
coupling encompassing medial prefrontal cortex. In support of their predictive value, area under receiver operating
characteristic curve was significant for the left and right amygdala-pgACC in relation to treatment responders.

Conclusions: Improvement after CBT was predicted by enhanced resting-state bilateral amygdala-prefrontal
coupling in gSAD. Preliminary results suggest baseline individual differences in a fundamental circuitry that may
underlie emotion regulation contributed to variation in symptom change after CBT. Findings offer a new approach
towards using a biological measure to foretell who will most likely benefit from CBT. In particular, the departure
from neural predictors based on illness-relevant stimuli (e.g., socio-emotional stimuli in gSAD) permits the
development of biomarkers that reflect commonalities in the neurobiology of anxiety and mood disorders.
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Background

Cognitive behavioral therapy (CBT) is empirically sup-
ported psychotherapy for generalized social anxiety dis-
order (gSAD), a common, debilitating illness marked by
excessive fears of negative evaluation by others [1]. CBT
primarily attempts to reduce symptoms via cognitive re-
structuring, an emotion regulation strategy aimed at de-
creasing thought-related negative affect, in conjunction
with exposure exercises (e.g., facing anxiety-evoking situa-
tions). While generally effective, treatment response is var-
ied with approximately 30% 40% of patients with gSAD
not fully responding to CBT [2,3]. Findings from neuroim-
aging studies indicate heterogeneity in treatment outcome
may relate in part to brain regions implicated in the
pathophysiology of gSAD that are utilized by CBT.

Accumulating data indicate the amygdala, a key emotion
processing region that mediates fear [4], plays a prominent
role in gSAD. The amygdala has interconnections to pre-
frontal regions that down-regulate emotional reactivity
(e.g., medial prefrontal cortex (mPFC); [5]). In gSAD,
amygdala hyper-reactivity to salient signals has been dem-
onstrated in addition to disturbances in regulatory regions
(e.g., exaggerated or attenuated mPFC activation; [6]).
Moreover, in the absence of stimuli presentation or task
engagement (i.e., during rest), aberrant amygdala connectiv-
ity with prefrontal regulatory areas (e.g., anterior cingulate
cortex (ACC), medial orbitofrontal cortex (mOFC)) has
been observed [7-9]. Findings suggest phasic hyper-reactive
amygdala responses to external information involve tonic
disturbances in core amygdala-prefrontal circuitry [8] and
that individual differences in such circuitry may factor into
the likelihood of benefiting from CBT.

To date, studies of amygdala as a brain-based marker
in predicting CBT response in gSAD appear to be lim-
ited to emotion perception tasks, and results have been
mixed. For example, we recently showed less pre-CBT
amygdala activity to emotional faces predicted CBT suc-
cess [10]; however, other emotion processing studies of
gSAD have not revealed amygdala effects [11,12]. Re-
garding prefrontal regions as predictors, we have ob-
served a positive link between dorsal ACC and mOFC
activity in gSAD during emotion processing and symp-
tom improvement in CBT [10,12] even in the absence of
amygdala findings [12]. However, it is not clear whether
amygdala response contributed to symptom change as
regions were examined in isolation as opposed to nodes
in a network.

A means of increasing our understanding of amygdala-
based circuitry as a biomarker in predicting who will
likely respond to CBT is with resting-state functional
MRI (rs-fMRI). An advantage of rs-fMRI is that it exam-
ines fundamental networks that are task independent
but may underlie emotion and regulatory processes in
the unprovoked state [13]. Therefore, the objective of
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this study was to use pre-CBT rs-fMRI to investigate the
relationship between amygdala-prefrontal coupling and
CBT success in gSAD. Based on the literature [10,12], we
hypothesized greater rs-fMRI amygdala-ACC or amygdala-
mOFC connectivity would correspond with CBT response.

Methods

Participants

All 21 participants (14 female, 7 male) with an average
age of 28.3 9.4 years met criteria for gSAD based on
the Structured Clinical Interview for DSM-IV (SCID)
[14]. Symptom severity was assessed with the Liebowitz
Social Anxiety Scale (LSAS) [15] administered by li-
censed clinicians, and depression level was measured
with the Beck Depression Inventory [16]. Clinical Global
Impression-Improvement (CGI-I; [17]), comprising a 7-
point scale (1=very much improved, 7 =worsening
symptoms), was used to determine whether or not a pa-
tient responded to treatment.

All the participants were free of psychotropic medica-
tion, except for two who were on a stable dose of bupro-
pion for at least 8 weeks prior to, and throughout, the
study. Exclusion criteria included current or recent (within
6 months of study) comorbid major depressive disorder or
recent substance abuse/dependence or any history of
major psychiatric illness (e.g., bipolar, psychotic disorder).

The participants were between 18 and 55 years of age,
right-handed, and free of current and past major medical
or neurologic illness, as confirmed by a Board Certified
physician. None of the participants tested positive for alco-
hol or illegal substances. The study protocol was approved
by the Institutional Review Boards of the University of
Michigan Medical School, and as per protocol, all the par-
ticipants provided written informed consent.

The patients received 12 weeks of manualized individ-
ual CBT conducted by the same doctoral-level licensed
clinical psychologist who has several years of training in
CBT. A licensed clinical psychologist with both expertise
in CBT and clinical trial investigations involving CBT
provided supervision to ensure adherence to treatment.
CBT encompassed psychoeducation, cognitive restruc-
turing, in vivo exposures, and relapse prevention [18].

Resting-state fMRI

Padding with foam cushions was used to reduce head
movement. The participants were instructed to fixate on a
crosshair centrally displayed on the blank gray screen, relax,
and let their mind wander without falling asleep for 8 min.

Functional imaging: acquisition and analysis

Magnetic resonance imaging (MRI) was performed on a
3 T GE Signa System (Milwaukee, WI) acquiring blood-
oxygen-level-dependent (BOLD) images with a T2*-
sensitive gradient-echo reverse spiral acquisition (3 mm
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Figure 1 Regressing LSAS change and scatterplot of regression analyses. (A) Regressing LSAS change (Ap erv_post) While initial

severity (LSASpe1y) is controlled for as a regressor of no interest; brain map depicts whole-brain analysis of covariance showing enhanced

left amygdala-anterior cingulate cortex/medial prefrontal cortex coupling during rest in gSAD displayed on statistical t-map at p < 0.005.

(B) Scatterplot of regression analyses depicting extracted measures of left amygdala-anterior cingulate cortex/medial prefrontal cortex
connectivity and relation to change in social anxiety severity. (C) Regressing LSAS change (Apetx_posttx) While baseline severity (LSASpety) iS
controlled for as a regressor of no interest; brain map depicts whole-brain analysis of covariance showing enhanced right amygdala-anterior
cingulate cortex connectivity during rest in gSAD displayed on statistical t-map at p < 0.005. (D) Scatterplot of regression analyses depicting
extracted measures of right amygdala-anterior cingulate cortex coupling and relation to change in social anxiety severity. (E) Regressing LSAS
change (Apretx—posttx) While initial severity (LSASpe1y) is controlled for as a regressor of no interest; brain map depicts whole-brain analysis of

covariance showing enhanced right amygdala-bilateral insula connectivity during rest in gSAD displayed on statistical t-map at p < 0.005.
(F) Scatterplot of regression analyses illustrating extracted measures of right amygdala-bilateral insula coupling and relation to change in
social anxiety severity. LSAS, Liebowitz Social Anxiety Scale; CBT, cognitive behavioral therapy; gSAD, generalized social anxiety disorder.

43 axial slices; 2 s TR; 30 ms TE; 64 64 matrix; 220 mm
FOV; 90 flip) optimized to minimize susceptibility arti-
facts in the medial temporal pole. High-resolution, T1-
weighted anatomical scans (3D-SPGR; 9 ms TR; 1.8 ms
TE; 15 flip; 256 256 matrix; 256 mm FOV, 1.2 mm
124 axial slices) were also acquired for precise anatomical
localization and normalization.

Analyses were performed using the Functional Connect-
ivity (CONN) toolbox [19], which employs routines from
the Statistical Parametric Mapping software (SPM8; Well-
come Trust Centre for Neuroimaging, London, UK). Eight
initial volumes from each resting-state run were discarded
to allow for T1 equilibration effects. Images were realigned
to correct for motion, corrected for errors in slice timing,
spatially transformed to standard MNI space using the
functional template provided with SPMS, resampled to
2-mm voxels, and smoothed with an 8-mm FWHM
Gaussian kernel prior to statistical analysis. The partici-
pants had no movement greater than 2-mm translation or
2 rotation across the run. Effects of nuisance variables
(global, white matter and CSF signals and movement pa-
rameters) were reduced following the CompCor strategy
[20]; data were band-pass filtered to 0.01 0.09 Hz.

Temporal correlations of the resting-state BOLD signal
time series were examined between the left and right
amygdala seed regions (anatomically derived regions of
interest from the Automated Anatomical Labeling (AAL)
toolbox [21]) and the rest of the brain. During second-level
processing, LSAS change (Aperx_postTx) Was regressed with
initial severity (LSASp.t) controlled for as a regressor of
no interest. The ACC and medial OFC regions of interest
were examined at the whole-brain level with significance
defined as p < 0.005 uncorrected with more than 20 con-
tiguous voxels per cluster (>160 volume mm?>) to strike a
balance between type I and II errors [22]. The AAL atlas
[21,23] was used to identify regions of interest (ROIs) and
other significant whole-brain findings across subjects.

To clarify the directionality and magnitude of baseline
amygdala-prefrontal connectivity related to change in
symptom severity, 10-mm-diameter spherical ROIs were

generated around the peak activation of a whole-brain
cluster. Subsequently, parameter estimates (} weights
and arbitrary units (au)) were extracted from the ROIs
for each participant and submitted to Pearsons correla-
tions and scatterplots in the Statistical Package for the
Social Sciences (SPSS version 20; Chicago, IL). Addition-
ally, the parameter estimates were used to calculate the
area under a receiver operating characteristic (ROC)
curve in SPSS to assess the predictive value of a priori
connectivity results in terms of CBT responders based
on CGI-I. Apart from fMRI, we performed a regression
analysis in SPSS to examine whether demographic fac-
tors (ie, age, gender, education level) independently
effected LSAS change (ApreTx_PostTx)-

Results

Treatment effects on social anxiety

Symptom severity assessed by LSAS significantly de-
creased from an average of 71.6 11.9 to 51.5 19.5 ( t=
4.87, p<0.001). The clinical cutoff is >60 for gSAD [24];
therefore, results point to a significant overall improve-
ment with variation in degree of symptom change. Add-
itionally, depression level which was in the minimal
range [16] at the start of CBT (11.7 8.3) significantly

decreased (5.0 6.0) ( t=4.60, p<0.001). Based on the
CGI-I, about 70% of the patients with gSAD (15 of 21)
were responders as they were rated to be very much
improved or much improved (CGI-I score of 1 or 2)
whereas 6 patients had a CGI-I score of >2 post-
treatment and were thus considered non-responders.

Regression analysis findings were not significant for age,
gender, or education level (all ps > 0.05).

fMRI

For the right amygdala, LSAS change (Apretx_postTx) Was
predicted by more baseline connectivity with the left
pregenual ACC ( pgACC) (i.e., anterior cingulum) [(-4,
48, 0), z=2.90, volume =392 mm? r=0.55, p<0.010]
(Figure 1). Area under an ROC curve regarding the right
amygdala-pgACC was 0.80 in the context of CBT
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responders which was significant (p <0.04). Similar
pgACC results were observed for the left amygdala [(10,
52, -2), z=3.30, volume = 928 mm?>; r=0.66, p < 0.001]
though here the cluster extended to the medial pre-
frontal cortex (i.e., frontal medial orbital gyrus) volume =
712 mm?® (Figure 1). Again, area under the curve (i.e.,
0.83) was significant (p <0.02). As to regions beyond
a priori prefrontal areas, we observed symptom im-
provement robustly corresponded with bilateral insula
(i.e., rolandic operculum) coupling [left: (-36, -30, 26),
z=4.00, volume = 2,648 mm? r=0.75, p <0.001; right:
(30, -10, 18), z=4.14, volume =2,192 mm? r=0.74,
p <0.001] related to the right amygdala. Area under the
curves concerning the right amygdala-left insula and
right amygdala-right insula were significant (i.e., 0.84,
p <0.02; 0.80, p <0.04, respectively) (Figure 1). For com-
pleteness, we report all results outside regions of interest
in Table 1.

Discussion

As hypothesized, clinical improvement following CBT
in the patients with gSAD was predicted by greater pre-
treatment amygdala connectivity with prefrontal regions
implicated in controlling emotion. Specifically, greater
symptom reduction was foretold by increased pre-CBT
right amygdala-pgACC and left amygdala-pgACC/mPFC
coupling, a circuit involved in emotion processing and
regulation [25,26]. In support of its predictive capacity,
ROC results pertaining to CBT responder based on
a CGI-I cutoff were also significant. Pointing to the po-
tential relevance of the circuit as a brain predictor and/
or target for treatment is a resting-state study showing
lower amygdala-ACC/mPFC connectivity in gSAD cor-
related with social anxiety severity and that deficient
coupling was enhanced by an acute challenge of the
neuropeptide oxytocin [9]. Together, findings indicate
intrinsic amygdala-medial prefrontal interactions may
play a role in predicting the likelihood of responding to
an intervention in gSAD. Findings expand on emotion
activation paradigms that have demonstrated associa-
tions between increases in ACC or mOFC activity be-
fore treatment and improvement after CBT in gSAD
[10,12]. Further study is needed to examine whether
phasic (e.g., task/emotion-based) in combination with
tonic (i.e., at rest ) biomarkers can be used to predict
response to CBT.

Beyond prefrontal regions of interest, symptom change
was foretold by more and less connectivity in an exten-
sive network indicative of the regions interconnected
with the amygdala (e.g., insula, occipital lobe, middle
temporal gyrus, superior frontal gyrus, parahippocampal
gyrus; [27]) in addition to wide-scale coupling within
and between networks exhibited at rest [13]. We did not
have a priori hypotheses for these regions and, therefore,

Page 5 of 7

hesitate to interpret these preliminary, exploratory find-
ings. Nevertheless, it is interesting to note symptom im-
provement also positively corresponded with the right
amygdala-insula (i.e., rolandic operculum) coupling and,
based on ROC findings, served as a good estimate of
treatment response. The insula is proposed to play a
role in anxiety disorders [28,29], which is supported by
observations of exaggerated insula reactivity to emo-
tional stimuli in gSAD relative to healthy controls [6].
In the context of treatment for gSAD, we observed in-
sula hyper-reactivity to threat relevant stimuli decreased
after CBT [12]; however, task-based pre-CBT insula ac-
tivity to threat has not yet been shown to predict symp-
tom change in gSAD [10-12]. Our findings suggest
that in the absence of external stimuli, baseline emotion
processing circuitry appears to function as a predictor.
More study is needed to understand how the intrinsic
amygdala-insula and other resting-state networks be-
yond a priori regions might be utilized by CBT.

Conclusions

First, our study is not without important limitations.
These include a relatively small sample size which in-
creases risk for type II errors. Second, 2 of the 21 partici-
pants with gSAD were taking bupropion. Even though the
medication was stable before the study and remained un-
changed during the study, and these participants did not
serve as outliers in a priori findings as indicated by scat-
terplots, any influence it may have had on other outcomes
cannot be ruled out. Third, the lack of a waitlist group to
serve as a control for changes in symptoms unrelated to
treatment reduces our ability to draw firm conclusions
about neural predictors of CBT response. Fourth, replica-
tion in an independent sample is necessary before conclu-
sions can be made as to the clinical relevance of our
findings. Fifth, connectivity results were limited to the bi-
lateral amygdala. Future studies may want to seed pre-
frontal regions implicated in emotion regulation (e.g.,
dorsolateral, dorsomedial prefrontal cortex; orbitofrontal
cortex; anterior cingulate cortex; [5]) to examine their re-
lationship with the amygdala and ability to predict CBT
success. Sixth, the lack of independent evaluators of treat-
ment fidelity and symptom change warrants replication
and further investigation. Despite limitations, findings sug-
gest individual differences in intrinsic amygdala-prefrontal
connectivity can help explain the heterogeneity in response
to CBT in gSAD. Findings also indicate resting-state fMRI
may be a useful approach in identifying brain-based bio-
markers in treatment response. Among the advantages of
resting-state biomarkers is the ease of application across
other internalizing psychopathologies that may have com-
mon pathophysiology and for which CBT is an empirically
validated treatment option (e.g., post-traumatic stress dis-
order, major depressive disorder).
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Table 1 Whole-brain voxel-wise regression: relation between pre-treatment to post-treatment change in social anxiety
severity, controlling for pre-treatment severity

MNI coordinates Volume

Region X y z (mm3) V4

Right amygdala

Positive correlation R rolandic operculum 30 -10 18 2,192 414
L rolandic operculum -36 -30 26 2,648 4.00
L middle temporal gyrus -58 —66 12 800 367
L angular gyrus -36 -70 48 552 338
R frontal inferior triangularis 48 26 10 760 3.26
L middle temporal gyrus —66 -34 2 608 318
L paracentral lobule -8 -20 78 344 3.15
R middle frontal gyrus 26 34 34 408 2.96
L anterior cingulum —4 48 0 392 290

Negative correlation L parahippocampal gyrus -14 2 -18 528 401
L temporal pole superior gyrus -26 14 -26 440 400
R hippocampus 24 =10 -20 328 3.98
R frontal superior orbital gyrus 16 16 -18 264 373
R gyrus rectus 6 32 -18 760 3.69
R frontal superior gyrus 16 66 26 360 3.64
R frontal middle orbital gyrus 38 42 -10 512 3.64
R frontal superior medial gyrus 10 40 56 352 348
L cerebellum -4 —40 -18 336 333
L frontal middle orbital gyrus -22 58 -10 296 3.04
L fusiform gyrus -32 —-18 -18 360 2.18

Left amygdala

Positive correlation L calcarine gyrus -12 —60 16 1,136 444
R temporal pole middle gyrus 32 18 -36 344 358
R anterior cingulum 10 52 -2 928 330
R frontal medial orbital gyrus 712 330
L middle occipital gyrus —-38 —78 20 344 327
R calcarine gyrus 8 -58 14 464 3.06

Negative correlation L caudate -18 -14 18 224 467
R frontal middle orbital gyrus 36 64 —4 1,104 405
L frontal middle gyrus —44 20 48 1,104 397
R inferior occipital gyrus 36 —64 -8 472 3.87
L cerebellum —42 -80 -22 784 377
R frontal superior medial gyrus 6 42 52 1,744 374
R frontal superior gyrus 14 68 24 576 3.68
R cerebellum 4 —48 —44 432 3.60
R frontal superior orbital gyrus 18 38 -16 376 353
R frontal inferior orbital gyrus 36 38 -12 480 347
L frontal middle orbital gyrus —22 52 -10 360 336
R superior parietal lobule 20 -62 60 440 3.21
L cerebellum —-18 —90 -30 200 315
R inferior temporal gyrus 56 —66 -8 296 3.00
R frontal middle gyrus 42 16 54 168 284

All listed clusters are significant at p < 0.005 (uncorrected) with a threshold of greater than 160 volume (mm?).
Areas showing a priori hypothesized treatment-related predictors are bolded.

MNI Montreal Neurological Institute, Z Z-score.
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